
環境パラメータ・シリーズ 3

淡水から生物への放射性物質の移行

財団法人原子力環境整備センター

淡水から生物への 放射性物質の移行

ENVIRONMENTAL PARAMETERS SERIES 3

Concentration Factors of Radionuclides in Freshwater Organisms

Radioactive Waste Management Center

¥			
			ï

目 次

100	100	700000	40000
+	-	が	+
=	6	711	=

1	٠	緒			言			•••	•••	•••	•••	•••	•••	•••			•••			•••	•••	•••		•••	•••	•••												1
2		濃	縮	係	数	の	定	義			•••	•••		•••	•••		•••	•••	•••	•••						•••	•••		•••	•••	•••	•••						2
3		濃	縮	係	数	に	関	す	る	湖	沼	化	学	的	考	察									•••				•••		•••	•••	• • •	• ••	• ••			5
		-		湖	沼	٠	河	Ш	水	Ø	物	性	-	_			•••	•••			٠			•••														, 5
	3	- T	1		塩	分	濃	度	٤	元	素	濃	度		•••			•••					•••						•••									5
	3	=	2		淡	水	中	に	お	け	る	安	定	元	素	の	存	在	状	態			٠										•••					6
					参	考	文	献																									•••		· · ·			16
4	•	濃	縮	係	数	の	変	動	要	因								•••																				21
	4	77	1		固	体	差	に	起	因	す	る	変	動		•••	•••		•••			•••									•••	•••						21
	4		2		棲	息	環	境	に	起	因	す	る	変	動															•••		•••						22
		4	_	2	_	1		環	境	水	Ø	安	定	元	素	濃	度	な	5	び	に	共	存	元	素													22
		4	-	2	-	2		核	種	0	物	理	的	`	化	学	的	形	態																			26
		4	-	2	_	3		水	温																						•••	•••	٠.					26
		4	_	2	_	4		底	質																													27
	4	-	3		水	棲	生	物	の	生	理	•	生	態	に	起	因	す	る	変	動		٠															27
		4	_	3	_	1		食	性																		•••			٠.,	•••	•••				٠		27
		4	_	3	_	2		生	体	に	お	け	る	元	素	代	謝																					28
		4	-	3	_	3		そ	の	他	の	生	物	学	的	要	因			•••					•••								٠.					28
					参	考	文	献												•••		•••	•••		•••							٠	••					29
5		濃	縮	係	数	に	関	連	す	る	計	算	モ	デ	ル		٠.,																					31
	5	-	1		水	棲	生	物	^	の	蓄	積	評	価				•••																				31
						-	汽	水	域	の	生	物	の	放	射	性	核	種	の	蓄	積	の	評	価	-	-	•••						••					31
		5	_	1	<u></u>	1		線	量	評	価	٤	濃	縮	係	数																				,		31
		5	_	1	-	2		塩	分	変	動	の	影	響																								34
		5	_	1		3		汽	水	産	の	生	物	の	濃	縮	係	数		•••		٠.,							•••			٠.,	••					36
		5	-	1	77	4		動	的	モ	デ	ル	に	ょ	る	推	定								•••		•••	•••		•••								40
					参	考	文	献																									•••	• • •	• • •			45
	5	_	2		人	体	の	線	量	当	量	評	価					•••																				46
																																						46
		5	_	2	_			線																														46
		5	_	2	_	2																																47

			5	TT:	2	-	2	e Tr	1		核	種	移	行	モ	デ	ル	に	関	す	る	考	察				•••		•••		•••	•••		•••	•••	•••	•••	47
			5	-	2	-	2	-25	2		パ	ラ	X	_	Þ	に	関	す	る	考	察				•••				•••									54
		5	_	2	_	3		モ	デ	ル	開	発	の	玉	際	的	動	向		•••			•••				•••	•••		•••	•••						,,,	55
6		濃	縮	係	数	等	デ	_	タ	_	覧														•••													56
	6	-	1		日	本	に	お	け	る	湖	沼	化	学	的	デ	-	タ	か	5	の	濃	縮	係	数	の	試	算									•••	56
		6	-	1	777	1		日	本	国	内	の	湖	沼	•	河	Ш	の	化	学	的	性	質					•••	•••	•••	•••	•••						56
		6	_	1	_	2		河	Ш	•	湖	沼	お	ょ	び	淡	水	生	物	中	の	安	定	元	素	٤	濃	縮	係	数	に	関	す	る	考	察		59
					参	考	文	献			•••	•••						•••		•••	•••			•••	٠	•••			•••								•••	79
	6	_	2		既	存	の	濃	縮	係	数	-	覧															•••										81
	6	-	3		生	物	濃	縮	に	関	連	す	る	代	謝	パ	ラ	x	_	タ					•••												•••	107
					参	考	文	献	į					•••					•••	•••	•••		•••		•••	• • • •	• • • •		٠					•••	•••		•••	113
環	境	パ	ラ	X	-	タ	整	備	検	討	第	=	委	員	会	名	簿						•••													•••		116
	あ	۲	が	き																										٠				•••				117

まえがき

この度、環境パラメータ・シリーズ3が完成致しました。前々から申しているように、 日本における原子力の歩みは、安全を先取りしながら進んで参りました。今後も引きつづ き、科学の粋を結集した安全確保が大切なことは申すまでもありません。

さて、人間が生活する環境における放射能を安全に管理するためには、放射線源から大気、陸圏、水圏を通じての人への放射性物質の移行を、計算モデルを用いて解明することが有効な手段となります。実際の環境試料からの検出が困難なほどに微量な水準でも、放出量をもとに算定することができます。そして、先々の生活環境への影響を予測して、予め管理の対策を講じて万全を期す訳です。

このような線量算定のモデルには、放射性核種の環境における各過程での移行を定量的に示すパラメータが用いられています。したがって、計算モデルがいかに理論的かつ精密にできていても、それに用いるパラメータが不正確では意味がありません。つまり、計算モデルとパラメータは、バランスがとれていることが必要です。計算モデルと環境パラメータについては、国際原子力機関(IAEA)、国際放射線防護委員会(ICRP)等の出版物があります。しかし、環境パラメータには、それを求めた実験条件による変動があり、また、地域特性等による変動も認められます。したがって、原子力施設の立地にあたっては、その地域に適合した精度と信頼性が高くかつ実際的なパラメータを選定してゆくことが大切となります。

当センターにおきましては、合理的かつ実際的なパラメータ選定をめざしての検討をつづけております。多岐にわたる環境パラメータのうちから、原子燃料サイクル施設関連の公衆の線量算定に重要で、かつ日本における検討の機会が乏しかったものから順次にとりあげて、検討をして参りました。つまり、専門科学者各位の協力によって、先ず放射性物質の土壌から農作物への移行につき植物の種類別に移行係数をまとめ(環境パラメータ・シリーズ№ 1、1988)、次いで、土壌中における放射性核種の移行速度を知るための土壌と土壌溶液間における放射性核種の分配係数(Kd)を土壌種別に整理しました(環境パラメータ・シリーズ№ 2、1990)。科学者・技術者各位から、環境放射能安全評価の向上に有効との激励に加えて、このような真摯な検討が安全に関する一般の理解を深めるとの意見もいただきました。海外からも照会状が届いております。また、1991年11月の日本放射線影響学会大会シンポジウム「公衆被曝線量算定のためのモデルとパラメータ(一ツ橋ホール、東京)における論議のベース資料として紹介され、日本原子力学会誌特集の中でも近く紹介されると聞いております。

地道なデータ整理にすぎませんが、このような反響に応えて、今回は淡水生物への放射 性物質の移行をまとめました。このパラメータについては、日本では総括的検討の機会に 恵まれなかったので、斯学専門家を結集しての検討を行いました。そして検討委員会では、 既存データの収集整理に加えて、日本の湖沼学的データを集めての新たな濃縮係数の算出 も行われました。

本書を出版し関係各位の御参考に供するにあたり、ここに、本書の編集と執筆にあたられた環境パラメータ整備検討第二委員会のメンバーを始め協力科学者各位に心より御礼を申し述べます。

1992年 5 月 財団法人 原子力環境整備センター 理 事 長 福 田 俊 雄

1. 緒 言

原子力施設などから水圏に放出される放射性物質は、水産生物を通じて人体に摂取される可能性があるため、放出は規制されている。わが国においては、原子力施設の多くは海岸に設置されているため、放射性物質の沿岸海域放出について多くの調査研究がなされ、その成果を取り入れて放出規制が実施されてきた。一方、欧米諸国では、原子力施設が主として河岸に設置され、そのため、飲料水や淡水生物の放射能研究に多大の努力が払われてきた。

このように、わが国では放射性物質の河川湖沼への直接放出は殆ど皆無であり、従って、淡水生物の放射能については余り関心がもたれなかった。しかし、原子燃料サイクル施設の多様化に対応しつつ公衆の被曝線量推定の合理化をはかるために、従来検討の機会が乏しかった淡水生物への放射性核種の移行に関し、ここに内外の知見を収集整理する次第である。さらに、河川湖沼水と海水が影響を及ぼしあう水域、つまり、汽水域での放射性核種の生物濃縮を解明することも大切と考え、この点についても考察を進めた。

2. 濃縮係数の定義

放射性核種が環境に放出された場合、被食者と捕食者の食物関係のつながりによって放 射性核種は高次の栄養段階にもたらされる。放射性核種が食物連鎖における各構成員間に 分布したとき、平衡に達した放射性核種濃度の構成員間の比の値を濃縮係数と呼ぶ。濃縮 係数は陸上環境での土壌と植物の間、あるいは、餌料生物と捕食者との間などで定義され るが、水棲生物と水中の核種濃度の関係を定量化するために用いられるのが最も一般的で ある。濃度の単位としては生重量当りの値をとることが多い。つまり、人体が食物を通じ て摂取する量を知るためには生重量当りの値を用いることが便利である。 水棲牛物が放 射性核種や安定元素を取り込む経路には、餌料生物の消化管吸収によるものと、えらや体 表を通じて水中から直接取り入れるものとがある。これらのうちのどちらの経路が重要か は、核種や生物種によって異なり一概にいうことはできない。元素の水棲生物移行には複 雑な生理・生態学的な反応機作・効果が関与しているが、濃縮係数はこれらの現象を捨象 し、生物と環境の平衡関係を前提として水棲生物の放射性核種の蓄積の程度をその生息環 境と関連づけて定量化したものであるということができる。すなわち、放射性核種濃度が 一定の水域で水棲生物が水、餌料を通じて次第に放射性核種を取り入れ、最終的にこの系 で放射性核種の分布が平衡に達したときの両者の比を濃縮係数(Concent-ration Factor) という。

濃縮係数 = 水棲生物の放射性核種(元素)濃度 / 水中の放射性核種(元素)濃度 一般に、生物については生重量当たりの放射能(例、Bq/g)を採り、生息水については、便宜上で容積当たりの放射能(例、Bq/ℓ)を採っている。生物の器官組織についての記載がない場合は、可食部(魚肉など)を対象としたものを原則とするが、小魚では全魚体の場合も見受けられる。

核爆発実験によるフォールアウトに由来する放射性核種、特に、""Sr、"37 Csについては、環境中での挙動、人体による取り込みなどを定量的に考察するとき、それぞれ、Ca、Kと対比しながら取り扱われてきた。環境物質や生体組織の1gのCaに対する""Sr 1pCiを1Suの単位(ストロンチウム・ユニット)で、また、1gのKに対する 137 Cs 1pCiを1Cu(セシウム・ユニット)として慣例的に表されてきた。放射性核種の環境中での移行経路や食物連鎖上でSrやCsは、CaやKとそれぞれ類似した挙動を示すが、同じではなくある程度の差異があり、これを差別(Discrimination)と呼んでいる。個々の段階での差別が総合された結果として、環境水と水棲生物の間、あるいは、食物と人体との間にSr/CaやCs/Kの比が異なってくる。このような比は差別比(Observed Ratio)と呼ばれるが、特に、SrとCaの挙動の類似性が高いことからSr-Ca差別比は 11 Srの挙動の解析に広く利用されてきた。

すなわち、環境水と水棲生物との間の差別比(OR)は、

と表すことができる。

放射性核種の水棲生物における濃縮係数は水中の安定同位元素及び類似元素の濃度によって変化する。予めいろいろな水域でのORを求め放射性核種の濃縮係数と水中の安定元素濃度の関係を得ておけば、類似安定元素のデータしか得られない水域においても放射性核種の濃縮係数を誘導することができることになる。

放射性核種の水棲生物による取り込みを動態的にとらえるために生物の取り込みを環境水中の濃度、そして、生物による排出を生物中の濃度と間の一次反応とみなして表現する手法が広く用いられている。すなわち、時刻tにおける生物中および水中の放射性核種濃度を C_t 、 C_w 生物による放射性核種の摂取率、排出率をi、kとすると生物中の放射性核種濃度は次式のように表すことができる。

$$\frac{dC_t}{dt} = i \cdot C_w - (k+\lambda) \cdot Ct \tag{1}$$

 C_w が一定の値 C_w^{const} であれば、

$$C_t = \frac{i \cdot C_w^{const}}{k+\lambda} \left(1 - e^{-(k+\lambda)t} \right) \tag{2}$$

である。ただし、λは、放射性核種の壊変定数である。

 C_w は実際の環境では拡散などによって時間とともに変動するものと考えられるが、もし、物理学的な壊変による減少のみを考慮すればよい場合には、初期濃度を C_w^o とすれば、

$$C_w = C_w^o \cdot e^{-\lambda t} \tag{3}$$

であり、(1)の解として次式を得る。

$$C_t = \frac{i \cdot C_w^o}{k} \quad e^{-\lambda t} - e^{-(k+\lambda)t} \tag{4}$$

生物中の放射性核種濃度を水中の濃度に対する比で表すと(2)式および(4)式はそれぞれ、次式のようになる。

$$\frac{C_t}{C_w} = \frac{i}{k+\lambda} \left(1 - e^{-(k+\lambda)t}\right) \tag{5}$$

$$\frac{C_t}{C_w} = \frac{i}{k} \left(1 - e^{-kt} \right) \tag{6}$$

濃度係数 (CF) は放射性核種の分布が生物中と水中で平衡に達したときの両者の比であるから (5)、(6) 式で $t \rightarrow \infty$ とした値とすることができる。したがって、

$$CF = \lim_{t \to \infty} \frac{C_t}{C_m} = \lim_{t \to \infty} \frac{i}{k+\lambda} \left(1 - e^{(-k+\lambda)t} \right) = \frac{i}{k+\lambda}$$
 (7)

あるいは、

$$CF = \lim_{t \to \infty} \frac{C_t}{C_w} = \lim_{t \to \infty} \frac{i}{k} (1 - e^{-kt}) = \frac{i}{k}$$
(8)

を得る。

濃縮係数は放射性同位元素などを用いた取り込み実験データから回帰分析によって求めることができ、(7)、(8)式のような代謝パラメータとの対応があるものとされている。 しかし、この方法は元素の生物濃縮現象を極めて単純化してとらえているものであり、得られた濃縮係数を適用する際にはその効用と限界について十分に吟味することが必要である。

3. 濃縮係数に関する湖沼化学的考察

― 湖沼・河川水の物性 ―

生物の元素の取り込み即ち濃縮係数は、様々な物理、化学そして生物学的要因で変動する。このような変動要因の影響を考慮に入れながら、日本の湖沼や河川に棲む生物について濃縮係数を検討することが、本報告が目指す目的のひとつである。従来このような作業は、わが国においては海洋を主な対象としたもので、一般に普遍的な性状を維持する海水をその基準として求められたものである。そこで、ここではまず湖沼・河川水の物理、化学的な性質や特性を調べ、さらに、そこに棲息する生物との係わり合いについて考察を加える。

3-1 塩分濃度と元素濃度

淡水圏における生物の元素の取り込みについて検討するときには次のような河川・湖沼水の元素濃度と物性との関係を考慮に入れることが必要である。

- (1) 淡水・汽水の塩分濃度と元素濃度、
- (2) 懸濁物の存在と元素濃度。

しかし、(2)に関する研究例に比較し(1)の報告例は少ない。淡水の物性や元素濃度には地質学的な地域特性があると考えられるので、このような検討を行うにあたっては、まず、それぞれの地域に固有の情報を蓄積することに留意する必要があろう。

カナダDalhousie 大学のAsoka, I. k. 等¹⁾が行ったソグネフィョルドにおけるMoに関する調査では、元素濃度と塩分濃度は直線関係にあることが示唆されている。Van der Sloot等²⁾やMorris, A. W. 等³⁾もこのような関係を報告しているが、Head, P. C. 等¹⁾によれば、このような関係は、安定元素を多量に含む海水が濃度の低い河川水で稀釈される結果として得られるものとされている。一般に、河川・湖沼等の淡水が流入する海域では、最初に、海水と淡水の混合が起こり前述のような結果がもたらされる。しかし、淡水の海水による無限稀釈によって海水の元素濃度は見かけ上は一定に保たれている。海水中では引き続き種々の反応が進行する。Kharker, D. P. 等⁶⁾によれば、淡水においては微量元素は無機・有機粒子に収着・吸着し、これらの粒子と挙動をともにする。淡水と接触すると粒子からの溶出や離脱などの反応が起こり、生物、物理的な作用で系外に失われた部分はこれらの副次的な反応によって補われることになる。一方、ある元素が河川水に高い濃度で存在することが観測されることがあるが、Paulson A. J. 等⁵⁾の指摘するように人為的な、或いは、地域に固有な効果が元素濃度に大きな影響を及ぼす可能性にも注意を払う必要がある。水中における元素の挙動は元素の種類によって異なっており、水圏におけるそれら

の存在状態を理解することが水棲生物による元素濃縮を把握するためにも不可欠となる。 そこで次にこの点について触れてみたい。

3-2 淡水中における安定元素の存在状態

淡水中の微量元素、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Se、Mo、Ag、Cd、Sn、Hg、T1、 あるいは、Pb等はM(H2O) g2+で示される 1 nm程度の金属水和物の粒子、M(H2O) gC1+やM(OH) 2" で示される1~2nm程度の無機錯体粒子、M-アミノ酸やM-脂肪酸などの2~6nm程度の有 機錯体粒子、そしてM-clayやM-Fe2O。或いはM-MnO2など粒径が10~500nm に及ぶコロイド 錯体となり、さらには土壌や生物残渣等の懸濁物に吸着 450nm以上の粒子となって系中に 存在するといわれている?)。これらの存在状態を知る方法は、対象となる粒子の粒径が10 ~5000 Å と微細なため、De Mora, S. J. *) や谷崎等 *) の報告にみられるように、化学的な 方法によらず物理的手段によることが多い。そのほかの方法としてFlorence, T. M. 等の ヘキサン・ブタノールによる溶媒抽出法100、その変法で高速液体クロマトグラフを用いる Lee, J. 等の方法¹¹⁾、そして、前述のFlorence, T. M. 等が報告しているキレート樹脂を 用いる分離法¹²⁾、更にはBatley, G. E. 等の電着法¹³⁾等がある。しかし、これらは淡水中 に存在する元素の原子間の結合状態を捉え、その化学構造を明らかにしようというもので はなく、全体としての粒子の荷電や極性等を捉えようとするものであり、"粒子の大きさ で分けることが元素の化学的性質を説明する"という認識に基づいた方法ということがで きる。ところで水の分析でしばしば採用される0.45μm のメンブレンフィルターによるろ 過という操作も単に水中の生物効果を除去するばかりではなく、元素の水中で存在し得る 種々の物理・化学的状態を分別し得るものである。

このような研究で得られた知見に基づいて淡水中における元素の物理・化学的状態を個々の元素について以下に述べる。

クロム (Cr) :

淡水中のCr濃度は 0.25μ g/ ℓ である 11)。Crの淡水中濃度は鉱山の存在や工場の排水が水系に流入するかなどにより大きな差異を生じるが、平均すれば 2.5μ g/ ℓ 前後の値である。その化学形についてはミシシッピー河を対象としたTrefry, J. H. 等 15) の調査があり、年間放出量の 1.5%が可溶性であったと報告している。Gibbs, R. J. 16) はアマゾン河とユーコン河のCrの存在比を調べ、わずかな可溶性画分と有機錯体に吸着、沈澱する画分、或いは、固形有機体と共に沈澱する画分等に分けられると報告している。すなわち、河川中に放出されたCrは全量の15%以下が水中に滞留するが、この画分はイオン交換反応などに関与している可能性があるとしている。海水中ではCr(VI) として存在する。

Pentreath, R. J. 17 が述べているように水和によって急激に $Cr(\Pi)$ が除去され可溶性の $Cr(\Pi)$ が水中に残る結果である。つまりCrは 3 価として淡水あるいは海水に流入すれば、そのわずか 2 %が溶液中に留まるだけであり、98% は懸濁物に吸着し生物が利用できない形態へと変化する。 $Cr(\Pi)$ であれば25%が水中に可溶態として溶存し、10% は懸濁粒子や有機化合物と結合し、その65% は底質に移行する。すなわち、Crは 3 価として放出されれば急激に底質に移行し、6 価であれば底質への移行比率は低い。また、底質とそれに接する水との間の分配係数(Kd)は前者が 3×10^5 であり、後者は 3×10^4 である 14 。マンガン (Mn):

海水及び汽水中のMn濃度は $3\mu g / \ell$ 、淡水中の濃度は $5\sim 10\mu g / \ell$ である。湖沼中のMnは可溶性、或いは粒子状として非常に安定した状態にある。しかし、Feとは異なり、塩分濃度 4%程度の海水に接触すると、Evans, $D.W.等 <math>^{18}$ のコロンビア河に関する報告のように可溶性のMnが増加する。これはMorris, $A.W. 等 <math>^{19}$ が述べているように水中のMnの存在はその系内で起こる凝集、あるいは、粒子の再懸濁等、錯体の反応に関連した複数以上の反応が進んだ結果であり、全ての反応はMnを可溶化する方向へと進むことによっている。また、稀酸可溶性のMn懸濁粒子の再溶解も可溶性Mnの増加の理由となっている。

Feely, R. A. 等 20 によればMnに凝集が起こるのは塩分濃度で20%程度であるとされている。

鉄 (Fe):

海水中のFeの濃度は $10 \mu g / \ell$ 、淡水中の濃度は一般的にはこれより高く、 $50 \mu g / \ell$ 程度とされている。淡水が海水と接触することによって、淡水中の安定元素がどのような物理化学的変化をするかについては、Paulson, A. J. $\5 の報告が示唆的である。

河川中に放出された可溶性のFeは、Mill, A. J. B. 2 1)の総説によれば、30%が弱酸性でコロイド粒子となって沈降、系外に除去される。この状態は水塊が低濃度の海水と接触するまで安定な状態にあるが、塩分濃度 4%の海水と接触することにより再びコロイドの形成は活発となり、その結果、水中の可溶性Feの濃度は急激に低下する。これはこの濃度領域で特有の反応である。汽水域でFe分子が粒子の表面に吸着する結果、濃度が低下する現象は広く一般に観察されることであり、Boyle, E. A. $\2 2)が述べるように海水中の陽イオン群によるFeコロイドの凝集反応に起因するものであろう。Murray, J. W. $\2 3)は、この反応によってFeは90%以上が沈降によって系外に除去されることを示している。

コパルト (Co) :

Coon海水中濃度は 0.1μ g $/\ell$ よりは低く、淡水では 1.0μ g $/\ell$ である 14 。Coot 懸濁 物に吸着する。この吸着には水中の懸濁物の粒子径が密接に関係しており、粒子径が16

 μ m以下で吸着量と粒子径は高い直線性を示す。また、Coの粒子吸着は粒子中の有機物の含量とも係わりがあるとされている。Marshall, L. S. 等 24)は内水面表層水中に存在する全Coの22%が粒子と結合し、この中の44%がプランクトン等の生体物に吸着していると報告している。富栄養状態の淡水系ではCoが水中の可溶性の有機物と錯体を形成し、その結果、懸濁物や底質への移行率が減少することをVanderploeg,H. A. 等 25)は報告している。

種々の物理化学形態を経て底質に吸着されたCoは、弱酸、あるいは酸化・還元剤等の作用で容易に離脱反応を起こす。海水中のCoはBowen、H. J. M. 26)が述べるように 2 価で存在する。Amiard、J. 27)によれば、そのうちの88%は可溶性で11.1%が不溶性であるとされている。Ophel、I. L. 28)は淡水湖の調査結果から、全投入量の28%が底質に吸着、6.04%は水中に、また、全量の 1.8%は懸濁物中に存在すると報告している。淡水底質と海底底質の分配定数(Kd)は、それぞれ、 10 0% 及び 10 4 の桁であるとされている 14 4)。底質にCoが結合した場合その 10 8%が生物に取り込み可能なものであり、 90 90%は利用されない錯体であると見積もられている。

ニッケル (Ni) :

Niの海水及び淡水中濃度は、 $1 \mu g / \ell$ 及び $5 \mu g / \ell$ である14%。Bowen, H. J. M. 26% によれば海水中では可溶性のNiが優勢であるとされている。Gibbs, R. J. 16% は、河川中でNiは以下のうよな化学形をとると報告している。

	アマゾン河	ユーコン河
可溶性及び有機態	2.7 %	2.2 %
吸着態	2.7 %	3.1 %
沈澱及び共沈澱	44.1 %	47.8 %
有機固体	12.7 %	16.0 %
結晶底質	37.7 %	31.0 %

一方、Leland, H. v. 等²⁹⁾ は汽水域のNiの量が底質の粒径や有機物含量と関連し、地下水の場合では不溶性の水和無機塩と結合することを報告している。

海水中のNiはその95%が懸濁粒子、有機錯体或いは有機固体と結合する。また、5%がNi²⁺としてイオン状、あるいは、コロイド状として水中に溶存する。淡水や汽水中に放出されたNi-63の水と底質との分配は分配係数(Kd)で10⁴ と算出され、河川にNi-63が放出された場合には1年間に放出量の30%が底質へと移行し、また、海洋、汽水域では年間に60%が移行すると見積もられている¹⁴。

銅 (Cu):

CuはDuinker, J. C. 等30) のライン川に関する研究で報告されているように海水舌と接

触することにより系外に失われる。その反応はSholkovitz, E. R. 等 31 が述べるように Feの系外への消失と同様、海水の陽イオン群によるコロイドの凝集反応によるものである。 Feely, R. A. 等 20 は、この反応の結果平均50%が系から失われると報告している。

亜鉛 (Zn):

Znの海水濃度は 12μ g $/\ell$ であり、淡水中では 10μ g $/\ell$ 程度と考えられている 14 。Bowen, H. J. M. 26 は海水に溶存するZnは Zn^{2+} として存在し、Pentreath, R. J. 32)はその一部が $Zn(OH)^+$ として存在すると報告している。海水中のZnの $10\sim15\%$ はイオン状であり $35\sim40\%$ が粒子に結合し、そして、50%が錯体として存在するといわれている。James, C. S. 等 33 は酸化状態の環境下では水中の可溶性のZnの38%は Zn^{2+} であり、30%は $Zn(OH)_2$ として、18%が $ZnC1^+$ であるとしている。また、還元状態ではZnSが支配的であり可溶性Znの99.2%は $Zn(OH)_3$ として存在すると述べている。淡水中においてはDHが $6.2\sim8.0$ 前後の中性域では Zn^{2+} が支配的であり、Zn0以下では硫化物錯体、Zn0以上であれば炭酸塩の錯体が優勢であると報告している。Zn1、Zn2 に Zn3 に Zn3 に Zn4 に Zn5 に Zn6 に Zn6 に Zn6 に Zn7 に Zn8 に Zn8 に Zn8 に Zn8 に Zn9 に Zn

海水中にZn-65が放出されると20%が懸濁物のイオン交換基と強く結合し、10%が可溶性の粒子表面の弱イオン交換基へ、そして60%が固体、有機物、可溶性有機錯体あるいはコロイドに取り込まれるとされている。つまり全Zn中の10%が遊離イオン状として、あるいは、炭酸塩、水酸化物として水中に残ることになる。Znの底質への移行は海水の底質のZn 濃度が $40\sim80~\mu$ g/g、淡水のそれが $60~\mu$ g/gであることから分配係数で表して両者とも $6\times10^3\sim6\times10^5$ 程度であるといえよう(上述したZnの水中濃度は定常的な値としては高すぎる可能性がある。 $0.1~\sim10~\mu$ g / ℓ の範囲で水中濃度とすることが合理的である) 14 。淡水中においては、Zn-65は底質粒子と容易に結合し、Kd値は $10^3\sim10^4$ であるというDuursma, E.K. 等 34 の報告もある。

セレン (Se) :

Seの外洋における海水濃度は 0.075μ g/ ℓ であり沿岸水はこれより高く 0.2μ g/ ℓ である $^{14)}$ 。淡水の湖沼ではこれより更に高く、 0.2μ g/ ℓ 以上とされるが 400μ g/ ℓ の例もある。

Bryan, G. W. 等 35)は海水中のSeの化学形はSeO $_4$ 2 であると報告している。Se濃度は深層よりも表層で高い。Sugimura, Y. 等 35)は表層水のSeの $50\sim80\%$ が 4 価であり、さらに 6 価のSe濃度が深層水よりも 3 倍ほど高いためであるとしている。Seの酸化状態はpHによって著しく変化する。pH6. $3\sim6$. 7域では亜セレン酸の第 2 鉄塩として沈澱、pH 8 では酸化され可溶性のセレン酸イオンとなる。Cutter, G. A. 37)によれば天然水中のSe(N)とSe(VI)のそれぞれの濃度は、海水表層でSe(N)は 5 ng/ ℓ 以下、Se(VI)は 80. 2ng/ ℓ 、また、淡

水湖でSe(IV)は17.7 ng/ℓ 、Se(VI)は5.0 ng/ℓ 以下、つまり、海水中ではSe(VI)が主であり淡水中ではSe(IV)が優勢であるとされている。淡水中のSeの化学形態はSeO。 2 であると考えられる。Swaine, D. J. 3 8 3 9が述べるように淡水中のSeは水酸化物、Mn酸化物、粘土粒子等に吸着する。この反応は塩分濃度の上昇する汽水域では逆方向に進み、粒子などに吸着したSeは水中に離脱する。

ルビジウム (Rb):

Rbの海水中濃度は $120 \mu g/\ell$ 、淡水の濃度はこれにより低く、 $1\sim1.5 \mu g/\ell$ 程度である 14)。また、Wolfe, D. A. 等 36)は沿岸および淡水域の底質のRb濃度として $15\sim30 \mu g/\ell$ を与えている。淡水生物の濃縮係数は海産生物のそれよりも大きい。これは生物の元素吸収に関して K と Rbが置換可能であること、また、 K の淡水濃度が海水のそれよりも、低いことなどによっている。

ストロンチウム (Sr):

Srの海水中の濃度は8000 μ g/ ℓ であるがLisk, D. J. 等 40 は淡水中の濃度を80 μ g/ ℓ としている。しかし、内湾や汽水域、あるいは、淡水では 100μ g/ ℓ が妥当な値であるとしている 14 。海水中でのSrはSr $^{2+}$ として存在する。Srが 2 価のイオンとして存在することはNelson, D. J. 41 の Sr $^{-90}$ の放出口における調査でも観察されている。Polikarpov, G. G. 42 はフォールアウトに由来する海水中のSrは87%はイオン状、10% は粒子状、そして、3% はコロイド状であると報告している。淡水中のSrはVanderploeg, H. A. 等 25 が述べているように $2\sim10\%$ が粒子状である。即ち、淡水や海水中ではSrは可溶態として存在し全量のわずか 1% 弱が懸濁粒子或いは有機コロイドに吸着して系外に除去される。水と底質との分配はKd値で海水で 10^2 、淡水では 4×10^4 程度と推定されている 14 。

ジルコニウム (Zr) :

Zrの海水中濃度は $0.22 \mu g/\ell$ 、淡水中では $2.6 \mu g/\ell$ である 14 。Polikarpov. G. G. 42)は海水中のZrの 1%がイオン状、3%がコロイド状そして残る96%が粒子状で存在すると報告している。また、Scott-Russell, R. 43)はZr-95やNb-95が海水中では粒子状、あるいは、化合物として存在し、これはZrがコロイドを形成し易く水和と重合反応が連続的に起こる結果であるとしている。即ち、海水中に流入したZrはその80%が急速に懸濁物と結合、また、15%以上がコロイドや溶存有機化合物と結合する。その結果 5%弱が水中に残ることとなる。水と底質との間の分配係数は海洋で 7×10^6 、淡水では 6×10^4 程度と考えられている 14 。

ニオブ (Nb) :

Nbの海水中濃度は $0.01\mu g/\ell$ 、淡水中濃度は $1.0\mu g/\ell$ である 14 。その化学的挙動はZrに類似し、粒子、コロイド、可溶性有機化合物と結合する。Zrとの相違はZrより粒子との

親和性が高い点にある。水、底質との分配係数は淡水、海水ともにZrと同様な値である。 モリブデン(Mo):

海水中のMo濃度は $10 \mu g/\ell$ 程度であり、淡水中では通常 $1 \mu g/\ell$ 位である 10° 。海洋の底質の濃度は $3 \mu g/g$ であることから海水と底質との分配係数は $3 \times 10^{\circ}$ 程度となる。Bowen, H. J. M. 2° 8)によれば海水中のMoはMoO $_4$ 2-として存在、また可溶性の化学種としてはモリブデン酸イオンが主要な形であるとしている。一方、Polikarpov, G. G. 12° 9は海水中のMoは3098がイオン状で存在し、1098がコロイド、そして、1098がコロイド、そして、1098が2日では、大部分が可溶性として存在すると考えられている。Moは水中に放出されると、その大部分は急速に底質に吸着され、水中に残るMoは、ほとんどがモリブデン酸イオンとして存在するものと考えられる。

テクネウチム (Tc) :

水域のTcに関する報告は少ない。Hunt, D. J. 等 44)はTc-99の海砂中濃度を求め 3.7mBq/g の値を報告している。Polikarpov, G. G. 42)は核爆発に由来するTcは不溶性で、18%がコロイド、 $64\pm9\%$ が粒子状であったと報告している。Tc-99 は、過酸化物のイオンとなり水溶液中で非常に安定であり容易に地下水にまで移行する。しかし底質と親和性があり吸着するが海水との接触により再び容易に離脱する。Tcは水圏で大部分が可能性の過酸化物イオンとして存在している。これらは無機懸濁粒子よりも有機物粒子と結び付き易く、水一底質間のKd値は 10^2 程度と低い値となる 14)。

ルテニウム (Ru):

Ruの海水中濃度は $7 \times 10^{-4} \mu \, g/\ell$ と言われる 14 。Ruの水中での挙動はFletcher,L. M. 45 が述べるように複雑である。Polikarpov,G. G. 42 は水中においてイオン状で存在するRuは皆無であり、 5% がコロイド、 95% が懸濁粒子として存在すると報告している。再処理工場からRuが放出される場合、その化学形はRuNO(NO3)3と推測されている。しかし、淡水あるいは海水中で硝酸基は置換を受けRuNO(NO3)20H、RuNO(OH)3、あるいは、RuNO(NO3)2C1、RuNOC13等の錯イオンとして存在することになる。

RuNO(NO $_3$) $_3$ 、はニトロシル・ルテニウム・ニトラト錯体、そしてRuNOC1 $_3$ はニトロシル・ルテニウム・クロロ錯体と呼ばれる化学形であり、前者が施設から放出された場合の化学形、後者はそれが海水中に放出されたときに予想される海水中における化学形である。また、RuNO(OH) $_3$ は淡水中に放出された場合のRuのとり得る化学形である。Keckes, S. 等 $^{4.6}$)はRuの生物濃縮が化学形によって10倍の差を生ずることを指摘したが、Ishikawa, M. 等 $^{4.7}$)、 $^{4.8}$)は、それが水中で形成される錯イオン種の荷電状態によることを指摘し、陽錯イオン種が陰錯イオン種の10倍の生物濃縮値を与えることを報告している。即ち、濃縮係数は水中で形成される種々の荷電錯イオン種の存在比率が異なり、陽錯イオン種の存在比率が高い場

合ほど、高い濃縮係数値を与える。

RuNO(NO $_3$)。が海水中に放出されると時間とともに陽錯イオン種が減少ある時間が経過すると皆無となり、陽イオン種と中性イオン種の存在比率が増加する。一方、塩化物では逆に海水接触時には存在しない陽錯イオン種の存在が時間とともに除々に増加し、 $20\sim30\%$ は陽錯イオン種となる。これがRu塩化物の濃縮係数が高い理由であり、海水中のみでなく淡水中でも同様な化学反応・生物濃縮が観察されるものと考えられている。Ruの水一底質の分配係数は錯イオン種により異なるが、海水では 5×10^3 程度であり、淡水では概ね 10^2 と考えられている 14 。

カドミウム (Cd):

Cdの海水濃度は沖合の海水では $0.02\sim0.05\mu g/\ell$ であり、沿岸水や汽水域では $0.2\sim0.5g/\ell$ 、また、淡水中の濃度は $0.5g/\ell$ である 14 、。Bryan, A. G. 35)はその著書の中で海水中の可溶性CdはCdCl $_2$ ⁰、CdCl $_3$ </sup>として存在することを示唆している。Simpson, W. R. 48)はCdの塩化物錯体の量が塩分濃度の上昇とともに増加し、その化学形は Bryanの報告するとおりであり、淡水中ではpHおよび水中の可溶性有機物の量に応じCd(0 H) $_2$ 0。錯体、あるいは、有機錯体として存在すると述べている。即ち、淡水中におけるCdの化学形は淡水中のpHや懸濁有機物の濃度等に依存している。一方、海水中では汽水域あるいは沿岸域等のように可溶性有機物の比率が高い場合を除けば、 0 CdCl $_2$ 0、CdCl $_3$ 2。CdCl $_3$ 2として存在し、有機錯体形をとることは稀となる。汽水域や海水が淡水と混合する水域でのCdの化学形には水域によって大きな相違があり様々な形をとると考えられる。

Cdは河川に放出されると可溶性のCd濃度が急激に低下する。この現象はHart, B. T. 等 50)が述べるように可溶性のCdが遊離イオンとして他の吸着体と結合するためであり、自らが錯体となり粒子へと変化するCu等とは異なるものである。汽水域における反応はこれとは逆に塩分濃度 $1\sim4$ %の海水に出会うことにより吸着体に吸着したCdイオンは溶離し可溶性のCdとなる。Mantoura, R. F. C. 等 51)は可溶性Cdは塩化物錯体が主要な化学形であるとしている。この塩化物錯体は、Benjamin, M. M. 等 52)が述べるように固体相との親和性に欠けるため、塩素イオン濃度が高い水塊に出会うとCdは固体表面に吸着することなく溶存状態を保つことになる。

スズ (Sn) :

Snの淡水中濃度は $0.002\sim5~\mu$ g/ ℓ である。また、海水の濃度は $0.005~\mu$ g/ ℓ 程度と見なされている 14 。Bowen, H. J. 等 53)は海水中のSnがSnO $_4$ Hおよび有機Snとして存在し、淡水中ではSn (N) として無機、有機化合物あるいはその誘導体等様々な組合わせで存在するとしている。Smith, J. D. 等 54)は全Sn量は汽水域から外洋水へと漸次減少することを報告している。また、Braman, R. S. 等 55)は海水、汽水、淡水域でのSn (N) 、メチルーSn、ジメ

チルーSnおよびトリメチルーSnの存在比(%)が次のとおりであると報告している。 スズの化学形

水	域	Sn (IV)	MeSn	DiMeSn	TriMeSn
海	水	40	15	33	12
汽	水	63	19	14	3.7
淡	水	46	22	15	16

底質のSnの分配係数は 2×10^5 と推定されている 14 、。水中のSnの50%はSn(IV)であり残りはメチルー、ジメチルー、あるいは、トリメチルー等有機錯体を形成しているが、種々の化学形の可溶性Snの吸着力は強く、 $10^4 \sim 10^5$ が底質のKdとして適当な値と言えよう。アンチモン(Sb):

Sbの海水中濃度は $0.25 \mu g/\ell$ であり、淡水中の濃度もほぼ同様である 14 。Bowen, H. J. M. 等 63 によれば海水中におけるアンチモンの存在形態はSb(0H) $_6$ であり、淡水中では、Sb の 5 価として存在するとされている。Polikarpov, G. G. 42)は海水中のSbの 73% がイオン、 15% がコロイド、12% が粒子状態をとると報告している。一方、河川水では、Sbの $50\sim60$ % は可溶性であることを Lieser, K. H. 等 66)は示している。即ち、水圏中に可溶性のSbが放出された場合、その大部分がイオン状あるいは可溶性の化学形態として残り、20% が懸濁物質や底質に吸着し系外に除去される。淡水中のSbの挙動は海水中のそれとおおよそ一致すると考えられる。

ョウ素(1):

I の海水および淡水中濃度は、それぞれ、55、 $1.5 \mu g/\ell$ である 14 。 Bowen, H. J. M. 26 は海水中の I は I $^-$ として存在し、 $10s^-$ としても存在し得ることを示唆している。一方、 Fleischer, M. 等 57 は大部分の I は海水中では $10s^-$ ではなく I $^-$ として存在し、海水中で 粒子と結合する割合はわずか 2 %以下であること、また、淡水中の I についても化学形は I $^-$ であると報告している。

水中の I は、大部分が水相に留まりわずかな分画が有機化合物と結合する。また、それより小さな分画が底質と結合していると考えることが出来る。実測データから海洋底質の Kdに $9\sim 9\times 10^1$ 、湖沼河川の底質の Kdとして $3\times 10^2\sim 3\times 10^3$ が得られている 14^1 。

Kolehmainen, S. E. 58 は安定元素データから得られた海洋底質のKd値に 3.3×10^2 、I -131 から求められた値として 5×10^2 を報告しており、安定元素で求められた結果と放射性同位体元素で求められた結果とはほぼ一致している。

セシウム (Cs):

Csの海水中濃度は 0.5μ g/ ℓ 、沿岸水では 0.4μ g/ ℓ 程度とされる 14)。淡水では 0.2μ g/ ℓ が平均的な値である。Csは海水中では可溶性のCs $^+$ として存在する。Duursma, E. G. 34)はわずかに全量の 0.006%が水中の懸濁物質と結合し、他はイオン状として水中に存在するとしている。しかし、海水中とは異なり淡水中ではCsは懸濁物質と結合する割合が高い。例えば、Smedile, E. 等 59)は河川中のCsの15%が懸濁物と結合していると報告している。Harrison, F. L. 等 59)は可溶性Cs $^-137$ に対する粒子状Cs $^-137$ の比が0.0021から0.17であり、その平均は0.0031であると報告している。放射性Csが海水中に放出された場合、極くわずかな量、恐らく、1%未満が海水中の懸濁物に吸着すると推定される。水相と底質との間の分配係数は海洋で 2.5×10^3 、淡水域では 2×10^4 が得られている 14)。また、一旦吸着したCsの約10%以下はイオン交換反応などにより再び溶出され得る画分である。

セリウム (Ce) :

Ceの海水中濃度は 0.04μ g/ ℓ 、淡水中濃度は 1μ g/ ℓ である 14 。Ivanovov, V. N. 等 61)は、自然状態においてはCeは可溶性の錯イオンとして、あるいは、粒子状、コロイド状で水中に存在すると報告している。Ce-144で得られた結果では、pH 4 以下では大部分がイオン状で存在し、これを海水に投入しても数日間は粒子への吸着等は起こらないとされている。しかし、それ以後ではCe水和物の懸濁物あるいはコロイドへの吸着反応が急激に進行する。水中におけるCeの化学反応そのものは不活発であり可溶性の化学形あるいは一部がコロイド状の物質として存在する。Carpenter, J. H. 等 62)はpH 8 の領域ではCeは酸化され易くなりコロイド状の水酸化セリウムとなり、また、pH $7\sim7.5$ ではCeは数日間イオン状で存在するがその後海水中の微少な懸濁粒子等に急激に結合するようになると報告している。即ち、海水に放出されるCe-141、Ce-144は、その70%は最終的に懸濁粒子と結合し、25%強がコロイド粒子として、また、残る5%弱が可溶性のイオンとして存在することになると考えられている。水と底質とのCe分配係数は海水で 1.3×10^6 、淡水では 5×10^4 である 14)。ネプツニウム (Np):

Npで放射生態学的に問題となるのはNp-237である。しかし、水系におけるNpの情報は少ない。Npの底質への吸着は顕著ではない。実測データから求められたKd値は $390\sim4100$ であり、室内実験結果も $1.0\times10^{\circ}\sim2.0\times10^{\circ}$ 程度である14 。Fowler. S. W. 等63 は水中のNpは 120時間を経ても90%以上が可溶性分画に残ると報告している。また、Pentreath, R. J. 等64 が英国セラフィールドにおいて実施した調査では、NpのKd値が再処理施設放出口から離れるにしたがい低い値となる傾向が観察され、Npの酸化状態によって底質への吸着が異なることが示された。即ち、4 価のNpは 5 価のNpに比べ底質との親和性が高く、4 価で放出されたNpは放出口から離れるにしたがい酸化され 5 価となり、それに伴ってKd値も低

下するものと考えられている。

プルトニウム (Pu):

海水中のPu濃度は37μBq/ℓであり、淡水中の濃度もほぼ同様である'''。15種のPu同 位体中、問題となるのはPu-238、Pu-239、Pu-240、Pu-241、およびPu-242の5種である。 Puの化学は非常に複雑である。Puは水に不溶性であり(10⁻⁶~10⁻⁸ mol/ℓ)底質との親 和性が高い。Polzer, W. L. 65) によれば環境中のPuが水溶液中で取り得る酸化状態は少なく ともPu(Ⅲ)、Pu(N)、Pu(V)、Pu(VI)の4種である。Pu(V)とPu(VI)が水中 における最も一般的な状態であり、水和物として存在している。これらのPu(V)、Pu (Ⅵ)は容易に還元されPu(Ⅲ)、Pu(Ⅳ)となるが、これらの酸化状態のPuは底質との 親和性が高い。種々の原子価におけるPuの溶解性に関しては Andelman, J.B.等 55) の報告 がある。Wahlgren, M.A. 67) は表層水中に存在するのは 4 価、 5 価のPuであり、このうち水 と底質、懸濁物間の吸着に関与するのはPu(N)であるとしている。これらのPuに関する 反応は錯体化学の範ちゅうで捉えられる問題と言うよりはコロイド化学の領域で理解され る問題であり、水域でのPuの挙動についてはコロイドの存在を考慮に入れ考察することが 重要であることを Onishi, Y. 等 °° は指摘している。 Hetherington, J. A. 等 °° は、Puが 湖沼、汽水や大陸棚に放出されると水相に残る割合は4%未満であり、他の殆ど全ては底 質や懸濁物と結合し、また、水深の浅い湖沼等ではその反応速度が大きいことを報告して いる。

可溶性有機物の存在がPuの分配係数(Kd)に与える影響は大きい。 Wahlgren, M. A. 70)等は水中の可溶性有機物を $115\sim1.6\,\mathrm{mg}/\ell$ の範囲で変化させたときにKd値は 3.0×10^3 から $3.0\times10^6\,\mathrm{ml/g}$ と大きく変動することを報告している。これは可溶性有機物とPu(IV)の錯体形成と粒子のPu(IV)および可溶性有機体の吸着基としての働きが拮抗していることによっている。大部分のPuは酸化Puとして、あるいは、酸化物・水酸化物被膜として鉱物粒子表面に沈着する。これに関与するのが水中のMnであり、MnはPuと強い親和性を示す。淡水中における平均Pu濃度は前述のとおり $37\,\mu$ Bq/ ℓ である。また、底質については $5.18\sim14.8\,\mathrm{mBq}/\ell$ とされ、その濃度は垂直混合により秋季と冬季に最大となる 71)。しかし、Puの水中濃度の報告値には大幅な差異があり $10^{-2}\sim10^{-8}\,\mathrm{Bq}/\ell$ にわたっており、放出源の性質や放出口からの距離、混合の程度あるいは流出入する水塊による除去効果等様々な要因の影響を受ける。

アメリシウム (Am):

Amの海水中濃度は、 $1\sim5$ Bq/ ℓ 、淡水中の濃度は $1.5\sim3.0$ Bq/ ℓ であり、海水中では 3 価の酸化物として存在する 14 。Onishi, Y. 等 68 は好気的条件の淡水中では、pHが 6.5以上であればAmSO4 $^{+}$ として、pHが 6.5以上であれば加水分解して難溶性のAmOH $^{2+}$ を生成す

るとしている。また、海水中における場合のように塩素イオンが高濃度に存在する水域ではpH6.5以下ではAmC1²+やAmS0₄+が、また、pH6.5以上でAmOH²+が最も一般的な化学形と考えられている。Emery, R. M. 等¹²)はAm-241の湖沼中での存在形は、85%が粒子状であり、2%が可溶性の陽イオン種、5%が陰イオン種であったと報告している。この粒子状Amは加水分解で生じた不溶性のAmOH²+あるいは水中の懸濁物にAmOH²+が吸着して生じたものと考えられることができる。可溶性のAmは大部分が陰イオン錯体として存在していると考えられている。Amは加水分解を受けAmOH²+を生じ粒子に吸着され、あるいは、一連の加水分解過程でコロイドを生成し系外に除去される。このコロイドは高濃度にAmの存在するとき形成されるもので、環境レベルのような低濃度域では存在し得ないものである。しかし、核燃料再処理工場の放出口の近傍等では形成される可能性があると考えられている。

以上、元素の淡水、汽水、また、海水中における一般的な化学的性質、あるいはこれらが混合したときに起こりうる変化について報告されている知見に基づいて考察した。予想されるようにこれらの変化は一様ではなく、対象とする河川・湖沼・海洋等の背景となっている地理的・地学的条件や開発等の人為的な条件によって様々な様相を示している。わが国の水系における元素の化学的挙動を理解するに際しても元素に固有の性質とわが国に特有な気候・風土・環境条件を関連づけて検討することが必要となってくる。そして、わが国の水系に棲息する水棲生物の特有な生理・生態学的条件を加味することによって元素あるいは放射性核種の最適な濃縮係数を求めることが可能になると考えることができよう。

参考文献

- 1) Asoka, I.K. and Chatt, A., Anal. Chem., 52, 828-833(1980)
- 2) Van der Sloot, H.A., Wals, G.D. and Das, H.A., Anal. Chem. Acta, 90, 193-200(1977)
- 3) Morris, A.W., Deep-Sea Res., 22, 49-54(1975)
- 4) Head, P.C. and Burton, J.D., J. Mar. Assoc. U.K., 50, 439-448(1970)
- 5) Paulson, A.J., Feely, R.A., Curl, H.C. and Gendron, J.F., Water Res., 18/5, 633-641(1984)
- 6) Kharkar, D.P., Turekian, K.K. and Bertine, K.K., Geochimica et Cosmochimica Acta, 32, 285-298(1968)
- 7) Leppard, G.G., Trace Element Speciation in Surface Waters and its Ecological Implications, Plenum Press, N.Y.

- 8) De mora, S.J. and Harrison, R.M., Water Res., 17/7,723-733(1983)
- 9) 谷崎良之,山崎正夫,下川利成, UDC, 24/6 17-32(1989)
- 10) Florence, T.M. and Batley, G.E., Proc. Int. Conf. on Heavy Metals in the Environment, Amsterdam(1981)
- 11) Lee, J., Water Res., 15, 507(1981)
- 12) Filby, R. H., Shah, K. R. and Funk, W. H., Proc. 2nd. Int. Conf. Nucl. Methods in Environmental Res.
- 13) Batley, G.E. and Florence, T.M., J. Electroanal. Chem., 55, 23(1974)
- 14) Conghtrey, P.J., Jackson, D., Jones, C.H., Kane, P. and Thorne, M.C., Radio-nuclide Distribution and Transport in Terrestrial and Aquatic Ecosystems, Vols. 1-3(1983), Vols. 4, 5(1984) and Vol. 6 A.A. Balkema, Rotterdam/Boston
- 15) Trefry, J.H. and Presley, B.J., Marine Pollutant Transfer, Lexington Books, Lexington, Mass., 39-76(1976)
- 16) Gibbs, R.J., Science, 180, 71-73(1973)
- 17) Pentreath, R.J., Oceanography Marine Biology, An Annual Review, Aberdeen Univ. Press, Aberdeen (1977)
- 18) Evans, D. W. and Cutshall, N. H., Radioactive Contamination of the Marine Environment, IAEA, Vienna, 125(1973)
- 19) Morris, A.W., Bale, A.J. and Howland R.J.M., Estuar. Coast. Shelf. Sci., 14, 175-192(1982)
- 20) Feely, R.A., Massoth, G.J. and Lamb, M.F., Trace Metals in Seawater, plenum Press, N.Y., Chap. 4, 227-244(1983)
- 21) Mill, A. J. B., A Rev. Environ. Techonol. Lett., 1, 97-108(1980)
- Boyle, E.A., Edmonds, J.M. and Sholkovitz, E.R., Geochimica et Cosmochmica Acta, 41, 1313-1324(1977)
- 23) Murray, J.W. and Gill, G., Geochimica et Cosmochmica Acta, 42, 9-19(1987)
- Marshall, J.S. and LeRoy, J.H., Proc. 3rd. National Symposium on Radioecology, USAEC Report CONF-710501, 465-473(1973)
- Vanderploeg, H.A., Parzyck, D.C., Wilcox, W.H., Kercher, J.R. and Kaye, S.V., Bioaccumulation Factors for Radionuclides in Freshwater Biota, ORNL-5002(1975)
- 26) Bowen, H.J.M., Trace Elements in Biochemistry, Academic Press, London(1966)
- 27) Amiard, J.C., CEA-R4928(1978)

- 28) Ophel, I.L. and Fraser, C.D., Proc. 3rd. National Symposium on Radioecology, USAEC Report CONF-710501, 323-327(1973)
- 29) Leland, H.V., Luoma, S.N., Elder, J.F. and Wilkers, D.j., J. Water Pollut. Control Fed., 50, 1469-1514(1978)
- 30) Duinker, J.C. and Nolting, R.F., Mar. Pollut. Bull., 8, 65-71(1977)
- 31) Sholkovits, E.R. and Copland D., Geochimica et Cosmochimica Acta, 45, 181-189(1981)
- 32) Pentreath, R.J., J. Mar. Biol. Assoc. UK., 53, 127-143(1973)
- 33) James, C.S. and Lu, C., Environ. Sci. Technol., 11, 174-182(1969)
- 34) Duursma, E.K., Oceanography Marine Biology, An Annual Review, 10, 137-223 (1972)
- 35) Bryan, G. W., Marine Pollution, Academic Press, N.Y. (1976)
- 36) Sugimura, Y., Suzuki, Y and Miyake, Y., J. Oceanog. Soc. Japan, 34, 93-96 (1978)
- 37) Cutter, G.A., Analyt. Chim. Acta, 98, 59-66(1978)
- 38) Swaine, D.J., Trace Substances in Environmental Health, 12, 129-134(1978)
- 39) Wolfe, D.A. and Rice, T.R., Fish. Bull., 701, 949-972(1972)
- 40) Lisk, D.J., Advances in Agronomy, 24, 267-325(1972)
- 41) Nelson, D.J., Science, 137, 38-39(1962)
- 42) Polikarpov, G.G., The Accumulation and Biological Effect of Radiological Substances, Reinhold, N.Y. (1966)
- 43) Scott-Russell, H., Radioactivity and Human Diet, Permagon Press, New York (1966)
- 44) Hunt, G.J., MAFF, Lowestoft, ISSN 0142-2499(1980)
- 45) Fletcher, J.M., Brown, P.G.M., Gardner, E.R., Hardy, C.J., Wain, A.G. and Woodhead, J.L., J. Inorg. Nucl. Chem, 1, 378-401(1955)
- 46) Keckes, S., Pucar, Z., Marajovic, Lj., Int. J. Oceanol. Limmol, 1, 246(1967)
- 47) Ishikawa, M., Pucar, Z., J. Radioanal. Chem., 11, 197-207(1972)
- 48) Ishikawa, M., Pucar, Z., J. Radioanal. Chem., 14, 53-61(1973)
- 49) Simpson, W.R., Progress in Oceanography (1981)
- 50) Hart, B.T. and Davies, S.H.R., Australian Water Resources Council, Technical Report 35, 188(1978)
- 51) Mantoura, R.F.C., Dickson, A. and Riley, J.P., Estuar. Coast. Marine Sci.,

- 6, 387-408(1978)
- 52) Benjamin, M.M. and Leckie J.O., Environ. Sci. Technol., 16, 162-170(1982)
- 53) Bowen, H.J.M., Environmental Chemistry of the Elements, Academic Press, London(1979)
- 54) Smith, J.D. and Burton, J.D., Geochimica et Cosmochimica Acta, 36, 621-629 (1972)
- 55) Braman, R.S. and Tompkins, M.A., Anal. Chem., 51, 12-19(1979)
- 56) Lieser, K.H., Calmano, W., Heuss, E. and Neitzert, V., J. Radioanal. Chem., 37, 717-726(1977)
- 57) Fleischer, M., Geochemistry and the Environment, NAS, Washington, 1, 26-28 (1974)
- 58) Kolehmainen, S.E., Radionuclides in Ecosystems, CONF-710501-pt.2, 829-835 (1971)
- 59) Smedile, E, and Queirazza, G., Radioecology & Energy Resources, Ecol. Soc. Am., Publ. 1, Dowden, Hutchinson & Ross Inc., Pennsylvania, 314-320(1975)
- 60) Harrisson F.L., Wong, K.M. and Heft, R.E., Radioecology & Energy Resources, Ecol. Soc. Am., Publ. 1, Dowden, Hutchinson & Ross Inc., Pennsylvania, 9-29(1975)
- 61) Ivanovov, V, N., Leshchenko, L.N. and Shparbar, N.Y., Oceanography, 12, 46-50(1972)
- 62) Carpenter, J.H. and Grant, V.F., J. Marine Research, 25, 228-238(1967)
- 63) Fowler, S.W. and Aston, S.R., Health Physics, 42, 515-520(1982)
- 64) Pentreath, R.J. and Harvey, B.R., Mar. Ecol. Prog. Ser., 6, 243-347(1981)
- 65) polzer, W.L., Solubility sdubility of plutonium in Soil/Water Environments, USAEC, HASL-83401(1971)
- 66) Andelman, J.B. and Rozzell, T.C., Am. Chem. Soc., Advances in Chemistry Series, 93(1970)
- Wahlgren, M.A. and Orlandini, F.A., ANL-80-115-Pt. 3 Annual Report Jan-Dec, 1980, Argonne National Laboratory (1981)
- 68) Onishi, Y., Serne, R.J., Arnold, E.M., Cowan, C.E. and Thompson, F.L., NUREG/CR-1322, PNL-2901 Battele Pacific Northwest Laboratories, Richland Washington, USA(1981)
- 69) Hetherington, J.A., Models and Mechanisms, Mar. Sci.Commun., 4, 239-274

(1978)

- 70) Wahlgren, M.A. and Marshall, J.S., IAEA-SM-198, in : Impacts of Nuclear Releases into the Aquatic Environment, p.227, IAEA, Vienna(1975)
- 71) Nuclear Energy Agency / OECD, The Environmental and Biological Behaviour of Plutonium and Some Other Transuranic Elements, NEA/OECD(1981)
- 72) Emery, R.M., Klopfer, D.E. and Weimer, W.C., BNWL-1867, Battele Pacific North-West Laboratories, Richland, Washington, USA(1974)

(石川昌史)

4. 濃縮係数の変動要因

線量評価においては対象とする地域や環境の自然科学的あるいは社会科学的な様々な特 性に十分な配慮がなされることがのぞまれる。濃縮係数に関しても牛物濃縮に影響を及ぼ す変動要因を考慮に入れ、評価の前提となっているいろいろな条件に適した値を選択する ことが重要である。わが国においては放射性核種の生物濃縮に関する研究はおもに海産牛 物を対象として行われてきた。淡水環境は海水環境と塩分濃度において顕著な差異がある。 淡水生物の体液の浸透圧は環境水より高く、逆に海産生物の体液は環境水より低い。した がって、浸透圧調節のための塩分代謝にはおのずと差が生じる。しかし、放射性核種や微 量元素の取り込みに影響を及ぼす要因は、淡水生物と海産生物とでは基本的に相違はない と考えられている。放射性核種の淡水生物における濃縮係数について考察するに際しては、 海産生物に関する知見も十分に活用することが必要である。水棲生物による元素濃縮に影 響を及ぼす変動要因については、既に、海産生物に関しては佐伯らによって実験的に検討 されており1)、また、淡水生物については清水による詳細な考察があり2)、濃縮係数を適 用する際の指針として利用することが推奨される。この他、濃縮係数の変動要因に関して 考察した報告がいくつかあるが、ここではBlaylockらによる総説³⁾、および、Vanderploeg の報告*)をもとに濃縮係数を用いる際に配慮すべき点について考えることとする。以下、 特に記載のない場合はこれら二つの文献を参照されたい。

ところで、濃縮係数は水棲生物に対する環境水の放射性核種(元素)の濃度比で表される。一般に、生物の濃度は生重量当りの値がとられる。淡水・海水、そして、水棲生物中の放射性核種(元素)濃度に関しては数多く報告値があり、濃縮係数を求めるために利用されている。これらの濃度の値は必ずしもすべてが濃縮係数を導くことを意図し得られたわけではないので、データの収集・解析段階でデータ間の整合性を図ることが大切である。変動要因の考察とともにデータの取扱にも注意が必要であろう。

4-1 個体差に起因する変動

生物濃縮に変動を与える要因には主に棲息環境に起因する要因と生物の生理・生態に起因する要因に大別される。これらの系統的な変動要因の他に個体差に起因するランダムな変動要因もあげられる。東京湾のカレイ、ムラサキイガイ、そして、各地のサメ・エイ類の例では、種々の元素の濃度の変動は、変動係数(標準偏差/平均値)で表すと20~80%程度であるといわれ、これは元素や生物の種類、臓器などで異なると報告されている。また、濃度の度数分布は高濃度側に尾をひき、正規分布よりは対数正規分布があてはまる場

合が多いとされている⁵⁾。水棲生物・環境水の放射性核種や元素の分析データを得るにあたっては、十分な頻度で十分な試料数が得られるようにサンプリングが計画される必要があろう。

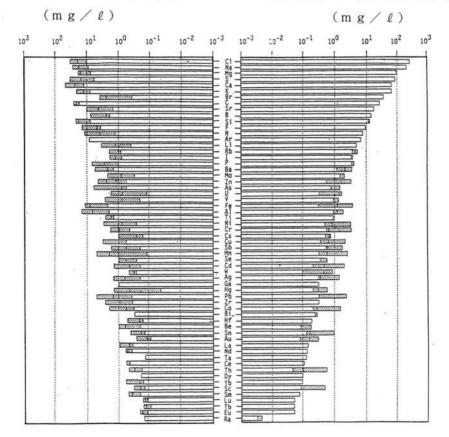
4-2 棲息環境に起因する変動

4-2-1 環境水の安定元素濃度ならびに共存元素

淡水環境は、塩分組成、濃度や水温など様々な環境要因について海水環境よりも概して 変動が大きい。図4-1に示したように、淡水の元素濃度について報告されている値は海 水に比べて相違が大きく?)、水域間での相違を示すものと考えられる。一般に、水棲生物 にとって必須な金属元素の場合、個体への投与量や環境水の濃度によって生体における効 果が変化することが知られている。この投与量や濃度には、濃度の増大にともない生物活 性が高まる領域、正常な機能状態を示す至適濃度領域、さらに濃度の上昇にともなって効 果が増大する薬理学的作用を示す領域、そして、高濃度のために効果が減少し毒性を示す 領域があるとされている*)。したがって、放射性核種の生物吸収は水域における安定同位 体の濃度によって変化するであろうことは想像に難くない。また、同位元素ではなくとも 放射性核種と挙動が類似し、放射性核種の担体として作用する元素がある場合には、放射 性核種の生物吸収はやはりこの担体元素の濃度によって影響を受けることになる。セシウ ムに対するカリ、ストロンチウムに対するカルシウムはこの顕著な例である。環境水の塩 分濃度の指標として電気伝導度、あるいは、軟水、硬水の分類が用いられ、魚類に含まれ る ¹³⁷Csと環境水の電気伝導度との間の負の相関関係があること ^{9)・10)} や魚類中の ¹³⁷Cs 濃度が硬水湖より軟水湖で高い事実などもこの観点から考察することによって理解されよ j.

淡水生物については環境水の元素、あるいは、塩分濃度と関連づけて放射性核種の濃縮 係数を表す試みがなされており、生物による放射性核種の取り込み方に三つのタイプを当 てはめている。すなわち、

- 1) 濃縮係数が当該放射性核種の安定同位体や担体として作用する類似元素の濃度によらず一定であるもの、
- 2) 生体における濃度がホメオスタシス(註1) によって一定に保たれるような元素で濃縮係数と環境水中の安定元素の濃度が反比例の関係にあるもの、そして、
- 3) 当該放射性核種と挙動が類似し、担体として作用する元素がホメオスタシスによって 生体中で一定の濃度に保たれているような核種に適用されるもので、濃縮係数と環境水


中の担体元素濃度が反比例し、比例常数が生体の元素濃度と差別係数(discrimination coefficient) の積で表されるものである。

多くの元素は第一のタイプに分類されるが、第二のタイプの例としてはマンガンがあり、第三の例としてはカリウムを担体とするセシウム、カルシウムを担体とするストロンチウムが挙げられる。第4-2図、第4-3図は、それぞれ、マンガン、ストロンチウムの魚類の濃縮係数と環境水中のマンガン、そして、カルシウムの濃度との関係を表したものであり、濃縮係数に関して上のような考え方の妥当性を示すものである。

水圏の元素組成

陸水の元素組織

海水の元素組織

第4-1図 水圏の元素組成 (Bowen(1979)⁷⁾からの作成)

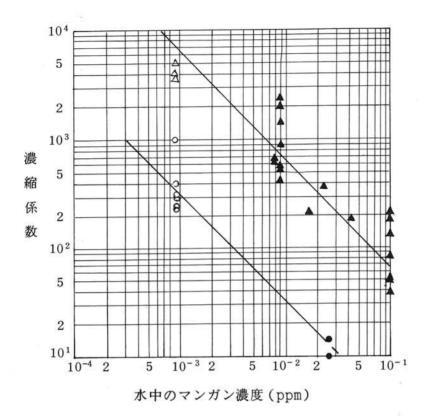
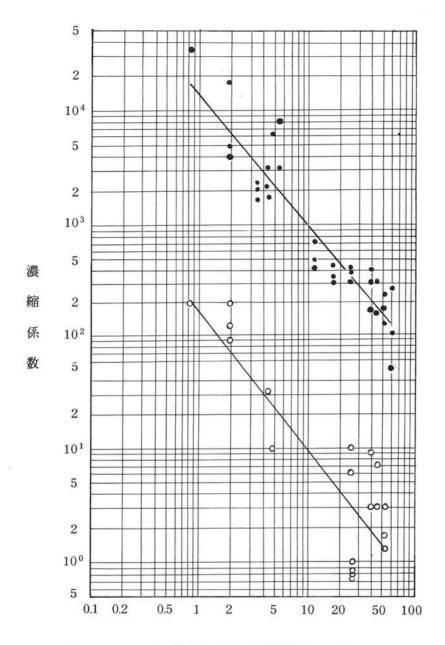



図 4 - 2 淡水産魚類におけるマンガンの濃縮係数と 水中マンガン濃度との関係

- 可食部、ろ過水に対する濃縮係数
- △ 全魚体、ろ過水に対する濃縮係数
- 可食部、未処理水に対する濃縮係数
- ▲ 全魚体、未処理水に対する濃縮係数

水中のカルシウム濃度(ppm)

図4-3 淡水産魚類におけるストロンチウムの濃縮係数と水中のカルシウム濃度との関係

- 筋肉についての濃縮係数
- 骨についての濃縮係数

4-2-2 核種の物理的、化学的形態

元素の生物吸収を左右する要因としてば水域の元素濃度とともに元素の存在形態が問題 となる。淡水域においては海水域よりも有機物を多量に溶存しており、これをリガンド (註2) として遷移金属、b 亜族の金属は錯体を形成、もしくは、コロイド物質に吸着さ れていると言われている。錯体を形成した金属はイオン状の金属より水棲生物による利用 度は低い。したがって、コバルトなどにおいては濃縮係数は水域の富栄養度と密接に関連 しており、貧栄養水域では富栄養水域においてより一桁以上高い値を用いることが適当と されている。また、元素によっては懸濁物質と親和性が高く、懸濁物質が生物濃縮を低減 する効果を示す場合がある。放射性セシウムでは、かなりの割合が懸濁物質中に存在する といわれ、生物の放射性汚染を評価するときに、環境水についての分析値が懸濁物を除い たろ過水についてのものであるか否かは重要な意味を持つことになる。同様に、プルトニ ウムは淡水生態系で粒子と強い親和性を示す。ハンフォードの U pond から採取した金魚 では^{23%} ²⁴ Pu の濃縮係数をろ過水についての値を基に評価すると未処理水の場合に比べ、 2.5 倍大きな値になっている。また、懸濁粒子をあまり多くは含まないミシガン湖におい て²³⁰ ²¹⁰Puの濃縮係数を求めた場合、濃縮係数の値はろ過の操作によって大きな影響を 受けなかったとされている。一方、放射性ストロンチウムについては懸濁物に収着されて いる割合がセシウムよりも小さいため、濃縮係数を算出する際、ろ過水についての値を用 いる場合と未処理のものについての値を用いる場合との差異はさほどに大きくはないと考 えられている。

4-2-3 水 温

一般に、変温動物では通常の棲息環境の温度領域においては、代謝活性は温度の上昇とともに増加するといわれている。しかし、この代謝活性の増加は10℃の温度上昇に対して2倍程度(Q₁0≒2)とされており、水温の変動が濃縮係数に及ぼす影響は、水中の塩分濃度、あるいは、当該核種の安定同位体濃度の変動などの影響に比較し、小さいものと考えられている。魚類については漁獲時期によって放射性セシウム濃度はおよそ2倍相違するという報告例があるが、濃縮係数を導く際に生物中の濃度として年間の平均的な値を採用するように留意すれば季節変動、すなわち、水温の変動による影響は線量評価上は無視し得る程度とみなすことができる。

4-2-4 底 質

水圏の底質は懸濁物質の堆積や吸着反応などにより重金属あるいは放射能汚染レベルは高く、底棲生物における汚染レベルも高くなることも考えられる。しかし、水棲生物の放射性核種の取り込みについて、環境水からの直接的なものと底質に起因する間接的なものとどちらが大きいかという問題については安易に判断を下すことは危険である。水圏生態系における核種の挙動については、水→生物、水→底質、そして、底質→生物の関係を動態的に考える必要がある。海産二枚貝の例では、海水のみで飼育した場合と海水に砂を加え砂の中で貝を飼育した場合の海水相に添加した放射性ルテニウムの貝による取り込みには二つの実験条件で差はなかったとされているい。一方、底質に放射性セシウムとコバルトを吸着させ、それに非汚染水を加え鯉を飼育した実験例では水への溶出は小さいもののこの水中の濃度から予想される生物中の濃度よりは実測値ははるかに大きく、底質の影響が大きかったとしている。実験対象とした鯉は底質ごと餌を取り入れ、底質を吐き出して摂餌する魚であり、一部の底質が消化管に入り消化管吸収によって、上記のような現象が起こるものとされている。「い・」こしたがって、元素の生物吸収に対する底質の効果については対象とする放射性核種、および、生物の摂餌行動など、個々の場合について考察することが必要であるう。

4-3 水棲生物の生理・生態に起因する変動

4-3-1 食 性

水棲生物が放射性核種を取り込む主要な経路には、鰓を通じて直接に取り込むものと消化管を介して餌から取り込むものの二つの場合が考えられる。濃縮係数について環境水からの寄与と餌からの寄与とどちらが大きいかについても一概に結論を下すことはできないが、セシウムなどについては汚染餌料の投与は体内負荷量の増加を早める効果があることは明らかである。放射性核種の水棲魚類消化管吸収は、核種によって異なり、海水魚の例では、セシウム、亜鉛が吸収率が高いものとして、ヨウ素、コバルト、マンガン等は中程度のものとして、そして、ストロンチウム、セリウムなどは吸収率は低いとされている。また、餌料の種類によっても消化管内の滞留時間、吸収率、あるいは、餌料それ自体の汚染水準は異なり、水棲生物の食性にも十分な考慮を払う必要がある。水棲動物の食性に関しては草食性であるか、肉食性であるかあるいは、雑食性であるかにより、また、成長過程での食性の変化によって生物中の元素濃度が異なっているようであり、濃縮係数も食性

によって数倍(セシウム)から一桁(鉄、プルトニウム)異なる値を与えている例がある。

4-3-2 生体における元素代謝

生体における元素の動態はそれぞれの元素によって特有の型を示す。亜鉛などのような生体に必須な元素はホメオスタシスにより一定の濃度に保たれるが、毒性金属であるカドミウムや鉛は年齢とともに臓器に蓄積し、また、プルトニウムやアメリシウムなどは骨などの組織に一方的に蓄積する傾向があるとされている「3)。このような元素については生理学的性質を配慮しつつ適正な濃縮係数を求めることがのぞまれる。例えば、プルトニウムなどについては、濃縮係数として年齢の高い個体の分析値から導かれた値を採用するなどの配慮が必要であろう。元素の生体内分布は臓器間で異なるが、濃縮係数は一般には可食部に対しての値である。筋肉は他の臓器に比べて概して金属などの元素濃度は低い。しかし、小型魚のように個体全体を食用に供する場合もあるので、食用とする状況に適合した濃縮係数を採用することも必要である。

4-3-3 その他の生物学的要因

ある種の貝類では成熟した雌の性腺でマンガン含量が雄の性腺に比べ、一桁高いことが知られている。重金属の生理的役割は、まだ、解明されてはいないが、卵細胞の急速な増殖の間、マンガンが触媒として作用していると考えることは妥当性があるとされている「10」。マンガン以外にも金属元素の雌雄間差が認められることがあるが、その理由は必ずしも明らかにはされていない。また、放射性コバルトは頭足類のある器官に特異的に濃縮されることが知られており、それが特定の生化学物質と結合しているとされている「5)。放射性核種が水棲生物中の生化学物質と結合しておりそれを食品として人体が摂取した場合に線量評価上どのような効果がもたらされているかは明らかではないが、ある生物種や器官に特異的に放射性核種が濃縮される現象があることには十分な配慮が必要であろう。

原子力施設の安全審査などの安全評価に際しては、全体として十分に安全を見込んでのパラメータが採用されている。一般に、環境パラメータに関しては様々な不確定要因があることを認識する必要がある。 濃縮係数についても生物濃縮に及ぼす様々な変動要因を十分に理解することが重要であり、科学的かつ合理的な値の採用を図りつつ、実際的で安全な線量評価が行われることが期待される。

- 註1 Homeostasis (恒常性):生物体が外的及び内的諸変化の中で、形態的、生理的な 状態を安定に保ち生体を維持する性質。
- 註 2 Ligand (配位子):錯体中で中心原子に配位している原子または原子団。

参考文献

- 1) 佐伯誠道他、「海洋放射能調査研究報告書-放射性核種の海産生物への移行に関する研究ならびに水産食品消費の実態調査-」NIRS-R-3、放射線医学総合研究所、1974.
- 2) 清水 誠、放射性物質の淡水生物への移行、第6回放医研環境セミナー「放射性物質による陸圏の汚染と線量推定の諸問題」報文集、NIRS-M-31、180-200 1979.
- 3) BLAYLOCK. B.G., Radionuclide Data Bases Available For Bioaccumulation Factors for Freshwater Biota, Nuclear Safety, 23, 4, 427-438, 1982.
- 4) VANDERPLOEG, H.A., PARZYCK, D.C., WILCOX, W.H., KERCHNER, J.R. and KAYE, S.V., Bioaccumulation factors for radionuclides in fresh water biota, ORNL-5002, Oak Ridge, TN, Energy Distribution Centre, 1975.
- 5) 清水 誠,濃縮係数を用いる際の問題点,第8回放医研環境セミナー「海洋における生物濃縮とそれに影響をおよぼす因子」報文集、NIRS-M-39,337-350(1980).
- 6) 清水 誠,放射性物質の淡水生物への移行、佐伯誠道編「環境放射能-挙動・生物 濃縮・人体被曝線量評価-」,206-214、ソフトサイエンス社、1984.
- 7) BOWEN, H.J.M., "Environmental Chemisty of the Elements", Academic Press, 1979.
- 8) 清水千秋, 魚類の必要金属元素、第8回放医研環境セミナー「海洋における生物濃縮とそれに影響をおよぼす因子」報文集、NIRS-M-39, 47-60(1980).
- 9) KOLEHMAINEN, S., et al., 137Cs in fish, plankton and plants in Finnish Lakes during 1964-5, in: "Radioecological Concentration Process", Aberg, B. and Hungate, F.P. (Eds.), p. 913-919, Pergamon Press, 1967.
- 10) KEVEN, N.R. and SPINGARELLI, S.A., Effects of selected factors on the accumulation of cesium-137 fallout by largemouth bass (Micropterus salmoides), in: "Radionuclides in Ecosystems", NELSON, D.J.(Ed.), USAEC CONF 71050-pl, P. 354-360(1971).
- 11) LAMMBRECHTS, A. and FOULQUIER, L., An experimental study on the possibilities of direct transfer of caesium 137 from sediment to the carps (Cyprinus carpio L.), CEA-R-5227(1983), (in French).

- 12) LAMBRECHTS, A. and FOULQUIER, L., Experimental study of the Transfer of a radionuclde mixture between water, sediment and fish., in: "Application of distribution coefficients to radiological assessment models", Proc. Int. Seminar jointly organized by the CEC and Univ. Catholique de Louvain, Louvainla-Neuve, EUR-10121 EN, Elsevier Applied Science Publishers, London(1986).
- 13) 松原純子,線量評価と臓器蓄積モデルの選択,第8回放医研環境セミナー「海洋における生物濃縮とそれに影響をおよぼす因子」報文集,NIRS-M-39,320-335(1980).
- 14) 生田 雄,軟体類の重金属濃縮,第8回放医研環境セミナー「海洋における生物濃縮とそれに影響をおよぼす因子」報文集,NIRS-M-39,153-191(1980).
- 15) 中原元和,頭足類のCo濃縮,第8回放医研環境セミナー「海洋における生物濃縮と それに影響をおよぼす因子」報文集,NIRS-M-39,192-206(1980).

(木村健一,渡部輝久)

5. 濃縮係数に関連する計算モデル

- 5-1 水棲生物への蓄積評価
 - 汽水域の生物の放射性核種の蓄積の評価 -

5-1-1 線量評価と濃縮係数

水域が放射性核種によって汚染された場合、その影響は内部被曝(放射性核種を蓄積した水産生物を摂取することによる)や外部被曝(海水や砂・底泥の汚染による)をもたらすことによって人体におよぶもの、あるいは水棲生物自体への影響(個体から生態系まで)まで多岐にわたる。しかしその評価の手順はほぼ固まっており、たとえば原子力発電所であれば液体放射性廃棄物についての評価法は、「発電用軽水型原子力炉施設の安全審査における一般公衆の線量評価について(原子力安全委員会)」に示されている。水棲生物に関することだけをとりあげれば、基本的には水棲生物の中の濃度を推定することに帰着し、それは水中濃度に濃縮係数を乗じて求めることができる。

このように、一般に水棲生物による放射性核種の蓄積の評価には生物体中濃度の水中濃度の比として得られている濃縮係数を用いる。この際用いる水中濃度は原子力発電所の評価の場合のように放出口濃度を用いることもあるし(この際、若干注意すべき点があるが、別にまとめてあるのでい参照されたい)、再処理施設の場合のように海水中の希釈を考慮して対象海域の濃度を求めて用いる場合もある。

ただし

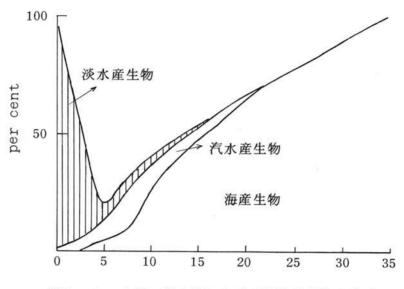
生物体中濃度 = 水中濃度 × 濃縮係数

として求めるのは安定した環境条件下で生物中の濃度が環境中の濃度と平衡関係を達成し、その量的関係が濃縮係数で示されることが前提となっている。環境条件が安定していないと生物と環境との平衡関係は成立するかどうかが問題となり、その吟味なしにはこの方法を適用することは適当でない。仮にこの方法が適用できないとすれば、このような静的な評価法ではなく、蓄積過程を動的に解析して体内濃度を推定する方法をとる必要がある。ただし、理論的には動的評価をすべき場合でも、静的評価によって安全側の推定になりしかも誤差もあまり大きくなければ、簡便さ等から静的評価が選ばれることもあろう。水棲生物の核種濃度の推定は線量評価という実際的な目的のために行われるので、どのような方法を用いて推定するかについては、実際的な観点から検討する必要がある。

汽水域における場合も、評価の考え方は同じで、濃縮係数あるいは核種蓄積に関すると りこみ・排出等の代謝パラメータが汽水産生物について得られればよいということになる。

第5-1-1(a)表

棲息環境区分による魚骨®®Sr濃度 単位S. U (pCi/g of Ca)


区分	採取年	最高値 (魚類)	最低値 (魚類)	平均値 (分析検体数)	分 析 魚 類
	1963	1.2(† パ)	0.2(77)	0.7(5)	カマス, アジ, サバ, カレイ
海水魚	' 64	4.7(カレイ)	0.2(# パ)	0.5(21)	ハタ, カレイ, エイ, チヌ, イワシ, サバ, ヒラメ, メバチ, タナゴ
	' 65	2.4(7 7 ‡)	0.1(黒ガラ)	0.6(18)	カレイ, コノシロ, スズキ, 黒ガラ, キチチ, ヒラメ, タラ, キス, アマダイ, サバ, アジ, チヌ
	1963	32.8(# 7)	1.3(ハ ₺)	17. 1(12)	ポラ ・ ハゼ
汽水魚	' 64	32.5(")	0.7(# 5)	10.5(7)	# 7
	65	42.6(")	1.5(")	15. 4(16)	#5
	1963	165.0() ()	29.5(1 1)	100.9(3)	J1, 7†
淡水魚	' 64	64.4(7 †)	13.0(")	40.0(11)	31,77
	' 65	48.8(7 +)	7.3(")	38.5(16)	J1.7t

第5-1-1(b)表

棲息環境区分による魚類筋肉及び内蔵中の137Cs濃度

単位 pCi/kg fresh

区 分	採取年	部位	最高値 (魚類)	最低値 (魚類)	平均值(分析検体数)	分析魚類
	1963	筋肉	188.1(カマス)	19.1(カレイ)	38.5(5)	カマス, アジ, サバ, カレイ
	1903	内蔵	88.3(")	13.1(")	48.0(5)	
海水鱼	64	筋肉	43.8(と ラメ)	3.4(f ¾)	18. 4(25)	ハタ,カレイ、エイ、チス、イワシ、サバ
海水魚	04	内蔵	111.6(")	4.1(カレイ)	23, 2(22)	ヒラメ、メバチ、タナゴ、コノシロ
	65	筋肉	62.5(x x +)	9.8(‡ ƒ ƒ)	27.6(22)	カレイ、スズキ、黒ガラ、キチヂ、
	00	内蔵	86.0(タナゴ)	4.6(‡ ҳ)	26.0(20)	Ŀラメ, タラ, キス, アマタイ, サハ, アシ, チヌ
	1000	筋肉	158.9(# 7)	14.1(ハ #)	86.5(2)	ボラ, ハゼ
	1963	内蔵	132.1(")	9.7(")	71.3(2)	
Short and a short	64	筋肉	45.3(")	3.9(# 7)	26.3(7)	ボラ
汽水魚	64	内蔵	222.6(")	7.4(")	76.1(7)	ボラ
	' 65	筋肉	87.3(")	11.4(")	46.3(6)	ボラ
	60	内蔵	132.1(")	23.5(")	83.7(6)	
	1000	筋肉	146.9(7 †)	53.8(1 1)	97.4(3)	J1, 7†
	1963	内蔵	39.5(1 ()	21.5(")	30, 5(2)	
ماه داد خاند	101	筋肉	168.0(7 †)	16.9(")	70.0(10)	J1, 7t
淡水魚	' 64	内蔵	189.0(")	16.4(")	99.7(10)	
	1 05	筋肉	170.9(1 1)	7.7(7 +)	61.1(16)	J1, 7†
	' 65	内蔵	122.0(")	27.0(")	61.5(15)	

第 5 - 1 - 1 図 汽水域における塩分と生物の分布 (Mclusky 1981)

問題は従来得られているのは多くが海産生物についてのもので(特に、日本では)、淡水産生物については少なく、汽水産生物については皆無といってもよい点である。1960年代前半、核爆発実験からの放射性降下物が多かった頃、水棲生物中の Sr-90やCs-137の調査において、それらの濃縮が淡水産 > 汽水産 > 海産である(例えば表 5-1-1 (a)、5-1-1 (b)参照)ことが報告されており 2 、汽水産生物で海産生物より濃縮係数が高いことは予想されていたが、定量的に十分な検討はなされていない。したがってなんらかの方法で、汽水産の生物についてこれらを推定しなければならない。

5-1-2 塩分変動の影響

汽水域における最大の特長は塩分濃度が時空間的に大きく変動することであろう。これ に伴って淡水産、汽水産、海産の生物が共存し、複雑な生物相を示す。(図5-1-1) 外洋では海水の塩分濃度は水塊によって若干異なるがほぼ35%と安定している。一方淡水 域では塩分濃度は変動は大きいがきわめて低く、0.001-0.1%である。汽水域では0.5-30% の範囲で変動する。したがってこの塩分の変動が評価のパラメータにどのような影響を示 すかを知ることが鍵となる。先に示した評価に関係するパラメータは水中濃度と濃縮係数 である。水中濃度についてどのように考えるかは問題であるが、ある水域の範囲を考え、 そこへの核種の流入は一定と考え平均的な濃度を考えると、塩分濃度の変動とは無関係と なるので、以下の議論ではこのパラメータについては変動を考えないこととする。なお、 濃度に変動があった場合も、生物学的半減期が小さければ生物中濃度は環境中濃度にあま り時間遅れなく追随するので生物と環境との平衡関係がほぼ保たれるとみなされ、濃縮係 数法で問題がない。また、生物学的半減期が大きいと平衡とはいえないが、環境中の核種 の変動がある範囲内であれば濃縮係数法での推定が安全側となるので、実態はともかく安 全評価の面では問題がないい。もう一つのパラメータは濃縮係数である。濃縮係数も生物 による核種の代謝に関する他のパラメータと同様、環境水の塩分ないし共存元素の濃度の 変動によって影響を受ける場合がある。この点に関してもすでに議論しているので詳細は 省くが(例えば文献3あるいは4参照)、淡水産と海産の生物の濃縮係数の差は、多くの 元素について、ほぼ淡水と海水の元素濃度の違いで説明されるい。なお、淡水産生物につ いていくつかの元素について水中濃度と濃縮係数がほぼ反比例の関係になっていることを Feldt ら 5)が示している。表 5-1-2 はThompsonらのまとめ 6)から計算したそれぞれの 元素の海水/淡水比と濃縮係数の淡水産/海産生物比を周期律表の中に示したものである。 例外はあるが、Ⅲ−Ⅵ族の元素でこれらの比が1より小さく、Ⅰ、Ⅱ、Ⅷ族の元素で比が 1より大きい。これらの比は、ほぼ0.01-100の範囲に入る。

第5-1-2表 元素別休中濃度比(佈水/液水、上段)と濃縮係数比(淡水莲/梅莲、下段)

0	00260		1.179	948		. 80	54 Xe 131.30	86 Rn (222)		
	11c Hic 4.0	MIA	9 F Ne 8. 998403 20.	17 18 C1 Ar 35,453 39.	325-5000	35 36 Br Kr 79, 904 83. 8 11000 33–21000	53 1	85 At Rr (210) (22 25 -1 0.01-1.5		
	元素	MA	8 0 15, 9994		230-450	34 Se 78. 96 0. 04-1		84 Po 1 (209) 0, 25 0, 025-1		
	金属	ΛΛ	7 N 14. 0067	15 P 30, 97376		33 As 74. 9216	51 Sb 121. 75	83 Bi 208, 980		
	非	NA	6 C 12.011	14 Si 28. 0855		32 Ge 72. 59	50 Sn 118. 69	82 Pb 207. 2 0. 2 0. 1-1		
		ША	5 B 10.81	13 A1 26. 98154		31 Ga 69. 72	49 In 114. 82	81 T1 204.37		
					II B	30 Zn 65.38 1-0.1	48 Cd 112.41 0.2 0.08-1	80 Hg 200.59 0.3 0.6-3		
					1 B	29 Cu 63. 546 0. 3-1	47 Ag. 107. 868 2.3 0. 007-1	79 Au 196. 9665		
						28 Ni 58.70 0.2 0.2-1	46	78 Pt 195. 09		
					Na Na	27 Co 58. 9332 0. 2 0. 2	45 Rh 102. 9055	77 Ir 192. 22		
	帐	2				26 Fe 55. 847 0. 01 0. 02-0. 2	44 Ru 101. 07 0. 1-1	76 0s 190. 2		
	属				MIB	25 Mn 54.9380 0.5 0.2-4	43 Tc (97)	75 Re 186. 207		
	A				MB	24 Cr 51, 996 0, 01 0, 02-0, 1	42 Mo 95, 94 10 1-100	74 183.85 0.1 0.3-40		
					ΛB	23 V 50. 9415	41 Nb 92, 9064 0, 01 0, 8-1	73 Ta 180, 9479 0, 01 0, 04-1		
					NB	22 Ti 47. 90	40 Zr 91. 22 0. 17 0. 02-0. 5	72 Hf 178. 49	104	
					III B	21 Se 44. 9559	39 Y 88. 9059	57~71 ランタノ イド元素	89~103	アクチノイド元素
		VΠ	4 Be 9. 01218	12 Mg 24, 305	65-130	20 Ca 40.08 27 26-80	38 Sr 87. 62 80 10-40	56 Ba 137.33 0.2 0.25-2	88 P2	226. 0254 0. 25 1-25
-:	1.0079	ΙΥ	3 Li 6.941	11 Na 22, 98977	100-300	19 K 39. 0983 130 25-130	37 Rb 85. 4678 60 60-240	55 Cs 132, 9054 10 4-13	87	223)

14, 967	103 Lr (260)
71 Lu 174.	
70	102
Yb	No
173. 04	(259)
69	101
Tm	Md
168. 9342	(258)
68	100
Er	Fm
167. 26	(257)
67	99
Ho	Es
164. 9304	(254)
66	98
Dy	Cf
162. 50	(251)
65	97
Tb	Bk
158. 9254	(247)
64	96
Cd	Cm
157. 25	(247)
63	95
Eu	Am
151. 96	(243)
62 Sm 150. 4	94 Pu (244) 0.2
61	93
Pm	Np
(145)	237. 0482
60 Nd 17 144. 24	92 U 238. 029 1-15
59	91
Pr	Pa
140, 9077	231. 0359
58 140.12 0.01	90 Th 232, 0381 0.5 1, 003-0, 5
57	89
188 9055	Ac
元素 0.013	227. 0278
ランタノイド元素	アクチノ イド元素

なお、これもすでに述べられているように、当該元素の濃度以外にCsに対するKあるいはSrに対するCaのように他の共存元素が濃縮に影響することも知られている。 つつのこのようなことも汽水産の生物について核種濃縮を考えるとき、考慮しなければならないが、先の表でCs・Srとも当該元素の濃度比だけである程度説明がつくので、ここではこれを考慮しなかった。

5-1-3 汽水産の生物の濃縮係数

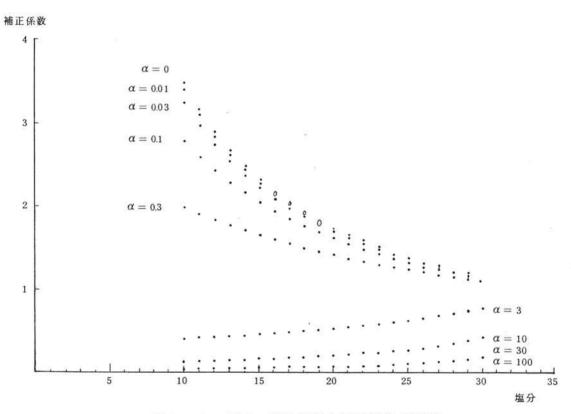
淡水産と海産の生物の濃縮係数の違いが、すべて環境水中の元素濃度の違いで説明できる訳ではなく、塩分の変化が元素濃度の変化に相当する効果を持つものでもないだろうから、今後さらに慎重な検討を要するが、ここでは濃縮が水中元素濃度に逆比例して変化し、塩分変化は元素濃度以外の変化はもたらさないと仮定して、汽水域での生物の核種の濃縮について検討してみたい。

汽水域では容量VS の海水(S=35)が容量VF の淡水(S=0)によって希釈されていると考えると、汽水域の塩分(S=bとする)は次のように書ける。

$$b = 3.5 \cdot VS / (VF + VS) \tag{1}$$

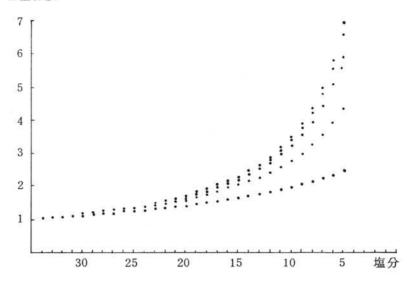
この塩分b に対応する元素濃度 C_b は淡水中の元素濃度を C_f 、海水中の元素濃度を C_s とする

$$C_b = (1 - b/35) \cdot C_f + (b/35) \cdot C_s \tag{2}$$

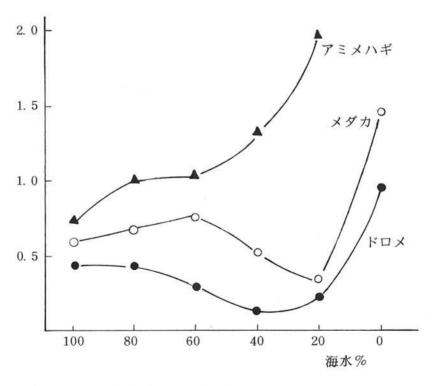

となる。先の仮定より濃縮係数(CF) は

$$CF_b = (C_s/C_b) \cdot CF_S \tag{3}$$

であるから、上の関係を用い C_f/C_s あるいは CF_s/CF_f を α とすると、塩分bと α とで次のように記述される。


$$CF_b = CF_s/\{\alpha \cdot (1 - b/35) + b/35\}$$
 (4)

したがって、海水中での濃縮係数に補正項がつくこととなる。この補正項は $\alpha \to 0$ 、すなわち淡水中の濃度が0、あるいは淡水中の濃縮係数が海水中での濃縮係数に比べてきわめて大きければ、35/bとなるから、塩分そのものに逆比例する形となる。しかし、そうでなければ35/bとは少し異なる補正項が必要となる。表5-1-2 は α を0.01-100までの範囲で変化させ、塩分0-35に対する補正項を示したものである。最も左の欄には α が0の場合を参考まで示した。図5-1-2 に見られるように α が1 より小さければ右下がり、大きければ右上がりの曲線となり、S=35でいずれも1となる。汽水域の塩分が概ね $10\sim30$ であるとすれば、海水中で濃縮係数が最大3 倍程度の補正が必要となることを示している。なお、この α は表5-1-3 に示した数値の逆数である。先の仮定に従えば(4)式によって汽水域での濃縮係数が算出されることとなる。



第5-1-2図 塩分濃度と補正係数の関係

とりこみ速度((cpm/g/day)/(cpm/ml))

第5-1-3図 塩分と放射性セシウムとりこみ速度との関係、 上欄に塩分と補正係数の関係を示す

第5-1-3表

表 補正係数

s^{α}	0.00	0.01	0.03	0.10	0.30	3.00	10.00	30.00	100.00
S 0 1 2 3 4 5 6 7 8 9 10 11 2 3 4 4 5 6 7 8 9 10 11 2 13 14 5 16 7 18 19 20 1 22 3 24 5 26 27 28 9 30 1 32 33 33 34	0.000 35.000 17.500 11.667 8.750 7.000 5.833 5.000 4.375 3.889 3.500 2.333 2.188 2.917 2.692 2.500 2.333 2.188 2.959 1.521 1.522 1.458 1.458 1.400 1.346 1.296 1.250 1.167 1.129 1.094 1.029	100.000 26.119 15.022 10.542 8.121 6.604 5.564 4.808 4.232 3.780 3.415 3.114 2.862 2.648 2.463 2.303 2.162 2.037 1.926 1.827 1.737 1.656 1.582 1.514 1.452 1.394 1.452 1.292 1.247 1.204 1.165 1.128 1.093 1.060 1.029	33. 333 17. 327 11. 706 8. 838 7. 099 5. 932 5. 095 4. 464 3. 973 3. 2756 2. 986 2. 758 2. 562 2. 392 2. 244 2. 112 1. 995 1. 797 1. 711 1. 634 1. 439 1. 383 1. 383 1. 285 1. 241 1. 125 1. 059 1. 029	0.10 10.000 7.955 6.645 4.930 4.375 3.933 3.571 3.271 2.800 2.612 2.448 2.303 2.174 2.059 1.955 1.8628 1.563 1.502 1.446 1.394 1.301 1.259 1.182 1.148 1.115 1.0854 1.0054 1.026	0.30 3.333 3.125 2.941 2.778 2.632 2.500 2.381 2.273 2.174 2.083 2.093 1.852 1.786 1.724 1.667 1.613 1.563 1.563 1.316 1.282 1.389 1.351 1.316 1.282 1.250 1.190 1.163 1.136 1.111 1.087 1.064 1.042 1.020	3.00 0.333 0.347 0.354 0.368 0.376 0.385 0.393 0.402 0.412 0.422 0.4432 0.455 0.467 0.479 0.5522 0.5538 0.5574 0.593 0.6146 0.6866 0.714 0.6866 0.7145 0.745 0.854 0.8946	0.100 0.103 0.105 0.108 0.111 0.115 0.118 0.122 0.126 0.130 0.135 0.139 0.145 0.150 0.156 0.163 0.170 0.178 0.186 0.206 0.217 0.230 0.245 0.261 0.280 0.302 0.327 0.357 0.393 0.438 0.493 0.565 0.6660 0.795	30.00 0.033 0.034 0.035 0.036 0.037 0.039 0.040 0.041 0.043 0.050 0.052 0.054 0.057 0.060 0.063 0.070 0.074 0.079 0.085 0.091 0.099 0.118 0.131 0.147 0.167 0.194 0.232 0.287 0.376 0.547	0.010 0.010 0.011 0.011 0.011 0.012 0.012 0.012 0.013 0.013 0.015 0.015 0.016 0.017 0.017 0.018 0.020 0.022 0.023 0.025 0.026 0.029 0.031 0.034 0.038 0.042 0.048 0.056 0.048 0.056 0.066 0.081 0.150 0.261
35	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

第 5 - 1 - 4 表

ある汽水域における塩分の季節変化の仮想例

塩	7)	塩	分
月月月月月月月月月月月	20 20 18 12 13	7 8 9 10 11 11 12 月	17 20 25 28 25 22

海水域での濃縮係数が淡水中より高い場合、汽水域ではこれより低くなる。ただ、この場合補正をせず、海水中の濃縮係数を適用すれば(時に必要以上の係数になるかも知れないが)安全側であることが保証される。

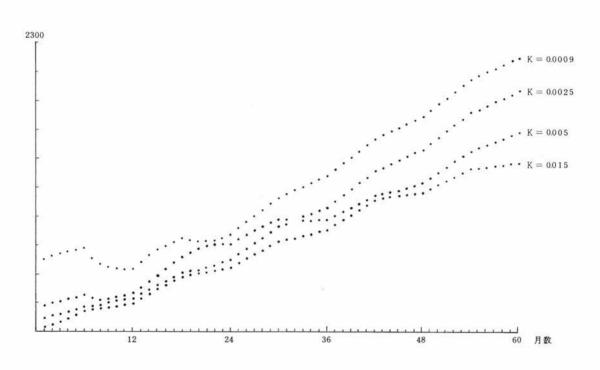
5-1-4 動的モデルによる推定

以上は汽水域の塩分濃度を一定の値 b とし、さらにこの環境に一生過ごす場合を考えたものである。実際は生活史の一部だけを汽水域で過ごす生物が多いし、また汽水域の塩分も季節的に変動することが考えられる。このような場合には静的な濃縮係数法では、生物中の核種濃度は推定できず、モデルを用いて動的な推定を行う必要がある。しかし、通常は海水中に棲息し生活史の一部だけを汽水域で過ごす場合、生活史の全部を汽水域で送る場合より核種濃度は低くなるから、先の補正はやはり安全側の値を与えることとなる。このことを念頭においた上で、参考までにモデルによる推定を試みておく。

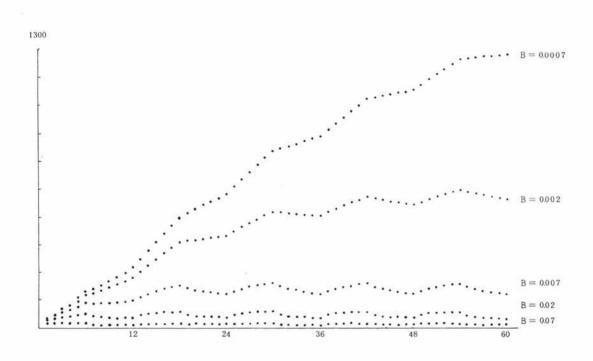
ここでは成長を考慮に入れた、生活史を通しての蓄積のモデルを用いる。このモデルは 重金属の魚類による蓄積の記述を試みた¹¹⁾ ものだが、重金属に見られる成長に伴って生 ずる濃度変化の3つの型、増加・減少・一定のすべてを一つの基本式から導こうとしたも のである。ここではこのモデルを述べることが主眼ではないので、概要だけ触れておく。

まず、蓄積は吸収と排泄の差があるから、基本式として

$$\frac{dQ_t}{dt} = U \cdot f(t) - B \cdot Q_t$$

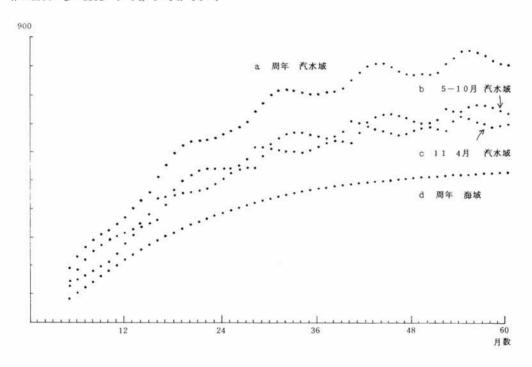

を考える。UとBは吸収と排泄の速度定数で、 Q_t はt時における対象元素の体内負荷量である。濃度は Q_t をt時の体重で割れば求められる。ここでは吸収は体長の二乗に比例すると仮定し、f(t)は体長の成長方程式の二乗形を用いた。また一般的な形とするために極限体長を L_∞ とし、各時点の体長を極限体長に対する比(L_t/L_∞)で表す。成長方程式は最もよく用いられる von Bertalanffy型、すなわち(1-exp(-Kt))型とした。Kは成長速度定数である。基本微分方程式を解くと体内負荷量は

$$Q_t = U \left\{ \frac{1}{B} (1 - e^{-Bt}) - \frac{2}{B - K} (e^{-Kt} - e^{-Bt}) + \frac{1}{B - 2K} (e^{-2Kt} - e^{-Bt}) \right\}$$


となり、濃度 (C_t) は

$$C_t = Q/(1-e^{-Kt})^3$$

となる。なお、ここでは変化の傾向だけを見ることを目的としているので過度に簡略化しているが、厳密には定数などをさらに詳細に限定しなければならない。 Q_t あるいは C_t の成長に伴う変化の型はBとKの相対的な大きさで変わるが、濃度はB=3Kの時、時間に関



第5-1-4図 Kを変えたときの核種蓄積のシミュレーション

第5-1-5図 Bを変えたときの核種蓄積のシミュレーション

K = 0.015 B = 0.002 1-12, 5-10, 11-4

第5-1-6図 周年あるいは半年汽水域に棲息する生物による 核種蓄積のシミュレーション

係なく一定で、Bが 3K より大きいと時間とともに減少し、小さいと時間とともに増加する。

半年を汽水域(S=20)、半年を海域(S=35)で過ごすとし、5年間(60 $_{7}$ 月)の蓄積を計算した。蓄積は成長速度(K)、とりこみ速度(U)、排泄速度(B)(ないし生物学的半減期($T_{1/2}$))に支配される。もちろん環境水中の核種濃度が問題となるが、最初に仮定したようにここではこれは一定とする。これら3つのパラメータが塩分の変化でどのような影響を受けるかについては必ずしも明らかではないが、ここではKとBは塩分の影響を受けず、Uのみが濃縮係数と同様の影響を受けると考えることとする。図5-1-3は環境水の塩分を変化させて魚による放射性セシウムのとりこみ速度の変化を見たものである 12 0。種類によって塩分変化に対する応答は必ずしも一定とはいえないが、変化の傾向、変動の範囲は先に見た濃縮係数についての補正項の値の変化の傾向、変動の範囲と巨視的には一致する。そこでここではUについても先の(4)式によって塩分変化の影響を考えることとした。Kについては1年で極限体長の80%に達するケース(K=0.015/day)を標準としその他これより成長の遅い3ケースを考え、Bについては生物学的半減期がほぼ10日、50日、200日、360日、1000日に見合う値(0.07~0.0007)を考えた。それぞれ一例を図5-1-4と5-1-5に示す。いずれも半年単位で蓄積の増減を繰り返すが、Bがある程度大きければほぼ平衡が達成されており補正項で示される一定の範囲を変動する。

最後に汽水域の塩分の季節変化をある汽水湖での観測結果を参考にして仮想例を作り (表5-1-4)、ここに周年生活するもの、 $5\sim10$ 月、 $11\sim4$ 月に生活するものの3 ケースを試算した結果を図5-1-6 に示す。なおこの図には周年海域に生活する場合も参考のためにのせてある。海と汽水湖では2 倍弱の違いとなっている。これらの試算では季節的な水温変化の各パラメータへの影響を無視している。しかし、この方が塩分変化に対応する変化だけを見るのに適していよう。

以上、非常に粗く汽水域での汚染の評価を試みた。汽水域に棲息するのは塩分適応性の高い広塩性の生物だが、魚類および一部の無脊椎植物のように浸透圧調節型の生物と多くの無脊椎動物のように浸透圧順応型のものがある。当然この二者では種々の物質の代謝とそれへの塩分濃度の変化の影響の仕方が変わる可能性がある。したがって、個々の生物についてどのような代謝モデルを考えるか慎重な吟味が必要ではあろうが、本稿での議論はその手始めで、今後種々の試みがなされることを期待したい。

参考文献

- 1) 清水 誠(1981) 海洋汚染の評価と生物濃縮,日本原子力学会誌,23(2):94-102.
- 佐伯誠道ほか(1966) 魚類のSr-90, Cs-137濃度,第8回放射能調査研究成果発表会論文抄録集(科学技術庁) pp.141-144.
- 3) 清水 誠 (1973) 環境における放射性物質の生物濃縮について、 Radioisotopes, 22(11):662-673.
- 4) 清水 誠 (1979) 生物濃縮,とくに水産生物における濃縮係数とその変動, Isotope News, No. 302:2-5.
- 5) W. Feldt and M. Melzer(1978) Konzentrationsfaktoren der Elemente Kobalt, Mangan, Eisen, Zink und Silber fur Fische Arch. Fisch Wiss., 29(1/2):105-112.
- 6) E.S. Thompson et al. (1972) Concentration factors of chemical elements in edible marine oeganisms TID4500(UCRL-50564 Rev. 1).
- 7) S. Kolehmainen et al. (1967) 137Cs in fish, plankton and plants in Finnish lakes during 1964-5, in: "Radiological Concentration Processes" ed. B. Aberg and F. P. Hungate, Pergamon Press pp. 913-919.
- 8) N.R. Keven and S.A. Spingarelli(1971) Effects of selected factors on the accumulation of cesium-137 fallout by largemouth bass (Micropterus salmoides) in: "Radionuclides in Ecosystems" ed. O.J. Nelson USAEC CONF. 71050-P1, pp. 354-360.
- 9) K.U. Kahn and Y. Hiyama(1964) Mutual effects of Sr-Ca upon their uptake by fish and freshwater plants, Rec. Oceanogy. Wks. Japan, 7:107-122.
- 10) W.L. Templeton and V.M. Brown(1963) The relationship between the concentration of calcium, strontium and strontium-90 in wild brown trout, <u>Salmo trutta</u> L. and the concentration of the stable elements in some waters of the United Kingdom and the implication in radiological health studies, Int. J.Air Water Pollut., 8:49-75.
- 11) M. Shimizu and M. Taguchi(1983) Variation of metals in sharks with size and its prediction by a single growth model, in: "Int. Conf. Heavy Metals in the Environment" Vol. 1, pp. 630-633.
- 12) 檜山義夫,清水 誠(1969) 放射性物質による水産物の汚染に関する研究、文部 省科学研究費特定研究報告集録(放射線影響編)昭和43年度.

(清水 誠)

5-2 人体の線量当量評価

- 放射性核種の淡水生物を通じての人体の線量算定モデル式 -

5-2-1 線量算定基本式

淡水生物の摂取による人体の被曝線量は基本的には次のように推定できる。なお被曝線量とは淡水生物を1年間摂取することによる70年間預託実効線量当量(Committed effective dose equivalent / Annual intake)を意味するが、以下簡単のために被曝線量(Dose)と略する。

(1) 個人の被曝線量 (Individual dose)

$$D_{j} = \sum_{k} W_{j,k} \sum_{i} (DF)_{i,j} Cf_{i,k}$$

$$\tag{1}$$

ここに、

 D_j : 年令 j の個人の被曝線量 (mSv/y)

Wik : 年令 jの個人が淡水生物 kを年間に摂取する量 (年間摂取量、kg/y)

 $(DF)_{i,j}$: 年令 jの個人が核種 iを単位量取り込むことによる被曝線量(線量換算係

数、mSv/Bq)

Cfik : 核種 i の淡水生物 k 中濃度 (Bq/kg)

(2) 集団の被曝線量 (Collective dose)

$$[CD] = C_o \sum_j P_j D_j \tag{2}$$

ここに、

[CD] :集団線量 (person·Sv/y)

 P_j : 年令 j の人口 (person)

 D_i :年令 jの個人の被曝線量(${ t mSv/y}$)

C_o: mSvからSvへの換算係数 (=10⁻³)

 D_i は(1)式から得られるので、

$$[CD] = C_o \sum_{j} P_j \sum_{k} W_{j,k} \sum_{i} (DF)_{i,j} Cf_{i,k}$$
 (3)

(3)式中、 $P_j \cdot W_{j,k}$ は年令 j の集団が淡水生物 k を年間に摂取する量である。これを j について積算すれば淡水生物 k の年間漁獲高に消費率を乗じたものに等しい。したがって、線量換算係数 $(DF)_{i,j}$ について人口構成比を考慮した平均値を用いれば、(3)式は次のようになる。

$$[CD] = C_o \sum_{i} \sum_{k} (\overline{DF})_i C_k A_k C f_{i,k}$$
(4)

$$(\overline{DF})_i = \sum p_j(DF)_{i,j}$$
, $p_j = P_j / P_o$ (4)

ここに、

 A_k : 淡水生物 k の年間漁獲高 (kg/y)

 C_k : 淡水生物 k の年間消費率 (-)

P_i : 人口 i の全人口に対する割合 (-)

 P_o : 全人口

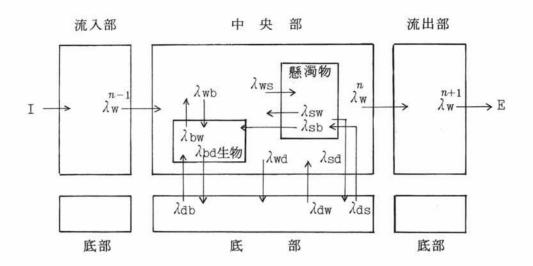
 P_o は本来淡水生物k を摂取する集団の人口であるがそれを推定することは一般に困難である。一方人口構成比 P_j は一家族を要素とする任意の母集団でほぼ一定していることが期待できる。したがって(4)、式による計算の方法は集団線量推定の精度を向上させるものと考えられる。

5-2-2 淡水生物中濃度の推定方法

5-2-2-1 核種移行モデルに関する考察

前章で考察したように、線量算定のためには、淡水生物中の核種濃度 $Cf_{i,k}$ を推定する必要がある。

Cfikを推定するためには、


- a) 流入する核種の淡水圏中の時間的、空間的分布、および、
- b) 淡水生物の時間的、空間的生息分布

を組み合わせて考えなければならない。

淡水圏としては河川および湖沼が考えられ、これらは比較的閉じた系とみることができる。このような場合、流入する放射性核種の系中の濃度は、いわゆるマルチコンパートメントモデル(Multi-compartmental model, MCM)で表現することができる。

(1) 基本モデル

簡単のために、川または湖の放射性核種流入部、中央部、出口部、底部の4 コンパートメントモデルを考えてみる(図5-2-1)。このうち底部を除く他のコンパートメントはそれぞれ、水、懸濁物、生物を含んでいるので、これらがさらにサブコンパートメント(Sub-compartment)となる(図5-2-1)。この多元コンパートメントについて、流入する放射性核種の放射能収支を数学的に表すと次のようになろう。

第5-2-1図 移行基本コンパートメントモデル

第n 番目のコンパートメント (n-zone) では、

$$\begin{cases}
\frac{dq_{w}^{n}}{dt} = -\left(\lambda_{r} + \lambda_{wn,n+1} + \lambda_{ws} + \lambda_{wb} + \lambda_{wd}^{n}\right)q_{w}^{n} + \lambda_{wn}q_{w}^{n-1} + \lambda_{sw}q_{s}^{n} + \lambda_{bw}q_{b}^{n} + \lambda_{dw}q_{d}^{n} \\
\frac{dq_{s}^{n}}{dt} = -\left(\lambda_{r} + \lambda_{sw} + \lambda_{sb} + \lambda_{sd}^{n}\right)q_{s}^{n} + \lambda_{ws}q_{w}^{n} + \lambda_{ds}^{n}q_{d}^{n} \\
\frac{dq_{b}^{n}}{dt} = -\left(\lambda_{r} + \lambda_{bw} + \lambda_{bd}\right)q_{b}^{n} + \lambda_{wb}q_{w}^{n} + \lambda_{sb}q_{s}^{n} + \lambda_{db}q_{d}^{n} \\
\frac{dq_{d}^{n}}{dt} = -\left(\lambda_{r} + \lambda_{dw}^{n} + \lambda_{db} + \lambda_{ds}^{n}\right)q_{d}^{n} + \lambda_{wd}^{n}q_{w}^{n} + \lambda_{sd}^{n}q_{s}^{n} + \lambda_{bd}q_{b}^{n}
\end{cases} (5)$$

 q_m^n :水中の全放射能 (Bq)

q_c : 懸濁物中の全放射能 (Bq)

 q_h^n : 生物中の全放射能 (Bq)

 q_d^n : 堆積土の全放射能 (Bq)

λ_r :放射性壊変定数(1/d)

λ_{ws} : 水から懸濁物への移行率(1/d)

λub : 水から生物への移行率(1/d)

λ_{sb} : 懸濁物から生物への移行率(1/d)

λ_{su} : 懸濁物から水への溶出率(1/d)

λ_{bu}: 生物から水への移行率(1/d)

λφ: 堆積土から生物への移行率(1/d)

 λ_{ind}^n :水から堆積土への移行率(1/d)

λⁿ_m: 堆積土から水への移行率(1/d)

λⁿ。: 懸濁物から堆積土への移行率(1/d)

λ%。: 堆積物から懸濁物への移行率(1/d)

λωπ.n+1 : n-zoneの水から(n+1)-zoneの水への核種の移行率(1/d)

流入部コンパートメントでは、核種の流入率をI(Bq/d)とすれば、

$$\lambda \iota \nu_{n-1,n} q_{\nu\nu}^{n-1} = I \tag{6}$$

となる。また出口部コンパートメントでは、核種の流出率をE(Bq/d)とすれば、

$$\lambda w_{n,n+1} q_m^n = E \tag{7}$$

となる。

(5)式は各コンパートメント中の全放射能を基にして放射能収支を表している。これは、

コンパートメントそれぞれの質が異なるために、濃度を基にするコンパートメント間の移行率が単純には(1/d)単位で表せないという煩雑さを避けるためである。しかし実際は濃度を知ることが必要になるが、各コンパートメントについての全放射能と濃度との関係は以下のように表すことができる。

水中

$$C_m^n = q_m^n / V_m^n \tag{8}$$

 V_m^n : コンパートメントnの水の容積 (\vec{m})

懸濁物中

$$C_s^n = q_s^n / M_s^n \tag{9}$$

 M_s^n : コンパートメントn中の懸濁物全量 (kg)

生物中

$$C_F^n = q_F^n / M_f^n \tag{10}$$

 M_f^n : コンパートメントn中に生息する生物の全量 (kg)

堆積土中

$$C_d^n = q_d^n / (A^n \cdot D^n \cdot \rho_d) \tag{11}$$

 A^n : コンパートメントn中の底部面積 (㎡)

 D^{n} : 堆積土の混合層深さ(m)

Pd : 堆積土の密度 (kg/m³)

なお、コンパートメント \mathbf{n} の容積 V^n とその中の水の容積 V^n_w とは厳密には次のような関係にある。

$$V_w^n = V^n - \left(M_s^n/\rho_s + M_f^n/\rho_f\right) \tag{12}$$

ρ_s :懸濁物の実効密度 (kg/㎡)

ρf : 生物の実効密度 (kg/m³)

以上は流入する放射性核種の移行に注目したコンパートメント構成である。しかし、前述のように、淡水生物の生息分布も数学的にモデル化する必要がある。例えば、注目する生物がある特定区域の底部に生息するものであれば、そこの部分を1つのコンパートメントにする。このときには(12)式などは特に念頭に置く必要があるかも知れない。

放射性核種の流入が1ヵ所ではなく大気中からの沈着であれば、各コンパートメントの

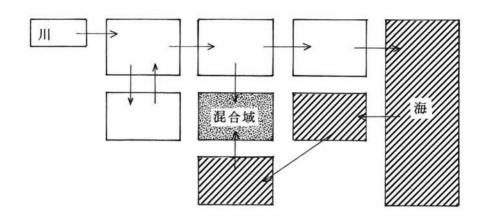
大気に接する部分に流入項を加えることになる。この場合、沈着した核種の深さ方向への拡散・移行が緩慢であるならば、沈着部分を1つのコンパートメントとして独立させるなどの工夫が必要である。

(2) 平衡モデル

放射性核種の流入が一時的な場合(事故的放出)には、核種移行の時間依存性を考慮しつつ(5)式を扱うことになる。一方原子力施設の平常運転時のように核種の流入率が一定連続であり、さらに淡水圏の年間を通した平均的状態を考えるならば、系全体を平衡状態として扱うことができる。この場合(5)式の左辺は 0 であり、右辺の移行率はすべて年間平均である。

(3) 汽水域モデル

汽水湖の中の生物の放射性物質の濃縮については前章において汚染評価の観点から考察を行い簡略かつ有効な方法が提示されているので、以下では動的モデルを用いてモデルパラメータの整理という観点から考察してみたい。


湖汐作用により海水が周期的に流出へし淡水と共存する汽水湖における放射性核種の生物への移行を推定する場合、以下の諸点を考える必要がある。

- a) 海水が浸入する範囲
- b) 淡水と海水が混合する範囲
- c) 海水領域で生息する生物の種類
- d) 淡水・海水混合層で生息する生物の種類

これらの点に注意すれば、汽水湖モデルは図5-2-2のようなコンパートメントで構成されよう。基本的には、海水は淡水より高密度なので下層へ入り、淡水は上層を通って海へ流出すると想定する。そして両層の接触する部分が混合層となる。海水コンパートメントは淡水より流入する放射性核種を含んでいないので、このコンパートメント中の放射性核種は生物、懸濁物、堆積土それぞれから海水中へ排泄または溶出するものだけに由来すると考えてよい。したがって、このコンパートメントにおける淡水と海水の交換率に比較して、生物からの排泄率および懸濁物、堆積土からの溶出率が十分小さければ、このコンパートメントの中の核種分布は淡水の混合状態とほとんど同じと考えられる。

上層の淡水コンパートメント内では、核種と生物、懸濁物との相互作用は前述の基本モデルで取り扱うことができる。ただしコンパートメントの容積は時間に依存して変化する。

同じ生物でも、淡水中と海水中では物質の体内への取り込み、蓄積の量が異なる。懸濁物からの溶出も異なると考えられる。したがって淡水・海水混合コンパートメント中の核種分布を推定する場合には、これらの差異を考慮する必要がある。以下淡水中での物質濃縮能力が海水中より大きい魚類を対象に、この問題についてさらに検討を加える。

第5-2-2図 上潮時汽水湖モデル

簡単のために、注目する魚類群のみが生息する容積 V_m の独立した混合コンパートメントを考える。このコンパートメントは、潮汐作用により海水が侵入し始める時刻(t=0)では淡水で満たされている。したがって、魚類と淡水との間の核種のやり取りは次のように表される。

$$\frac{dq_w}{dt} = -(\lambda_r + \lambda_{wb})q_w + \lambda_{bw}q_b$$

$$\frac{dq_b}{dt} = -(\lambda_r + \lambda_{bw})q_b + \lambda_{Wb}q_w$$

$$-t_o < t \le 0$$
(13)

各パラメータは(5)式で定義されているものである。

(13)式をさらに簡単にするために、淡水中の放射能 q_w は q_b に比べて十分大きく、生物とのやり取りによって変化しないと仮定する。したがって生物中の放射性核種濃度 C_b の変化は次のように推定できる。

$$\frac{dC_b}{dt} = -(\lambda_r + \lambda_{bw})C_b + \lambda_{wb}C_w \tag{14}$$

 C_{us} は混合コンパートメント中の水中濃度であるが、潮汐周期(t_o)の間で次のように変化 すると想定する。

$$C_{w}^{o} = C_{w}^{o}(1 - t/t_{o}), \qquad 0 \le t \le \frac{1}{2}t_{o}$$

$$C_{w} = C_{w}^{o}t/t_{o}, \qquad \frac{1}{2}t_{o} \le t \le t_{o}$$

$$(15)$$

Cw は混合開始時の水中濃度である。

淡水中の海水中で濃縮係数が異なる生物は塩分濃度によって代謝作用が異なるだろうから、混合の過程で(14)式中の λ_{bw} , λ_{wb} は変化すると考えられる。ここでは放射性核種の取り込みの作用は一定として($\lambda_{wb}=-$ 定)、排泄の作用が濃度に応じて次のように変化すると仮定する。

$$\lambda_{e} = \lambda_{bw}^{f} \left(1 + \frac{kt}{t_{o}} \right) + \lambda_{r}, \qquad 0 \le t \le \frac{1}{2} t_{o}$$

$$\lambda_{e} = \lambda_{bw}^{f} \left\{ 1 + \frac{k}{t_{o}} (t_{o} - t) \right\} + \lambda_{r}, \qquad \frac{1}{2} t_{o} \le t \le t_{o}$$

$$(16)$$

 χ_{buv} は淡水中における生物の排泄率、k は比例定数である。 したがって(14)式は

$$\frac{dC_b}{dt} + \lambda_e C_b = \lambda_{wb} C_w (1 - t/t_o), \qquad 0 \le t \le \frac{1}{2} t_o$$
(17)

(17) 式の解は

$$C_b = e^{(-\alpha T + \beta T^2)} \left[\lambda_{wb}^f C_w^o \int_o^T (1 - \frac{t}{t_o}) e^{(\alpha t + \beta t^2)} dt + const. \right]$$

$$\alpha = \lambda_{bw}^f + \lambda_r$$

$$\beta = k \lambda_{bw}^f / (2t_o)$$
(18)

潮汐作用の後半(½ $t_o \le t \le t_o$)では、水中濃度 C_w と生物中濃度 C_b は (15)、(18)式の逆をたどることになる。

5-2-2-2 パラメータに関する考察

(1) 淡水湖モデル

放射性物質が河川湖沼へ一時的に放出される事故的放出の場合は、濃度等の時間変化を 把握する必要があるので、(5) 式を扱うことになる。したがって (5) 式に含まれる各種 のパラメータに値が必要となる。しかし一般には定常的放出で平衡状態における放射能分 布を知ることが重要なので、この場合を考えて平衡モデルについてパラメータを考察する。

現在、平衡状態を前提として、生物の濃縮係数、懸濁物・底土の分配係数、懸濁物の沈降速度、底土からの再浮遊係数などが定義され、定義にしたがってそれぞれのデータが得られている。したがって平衡モデルではこれらのデータが使用可能であるし、使う必要もある。しかし(5)式の λ_{ub} , λ_{bu} 等の代わりに濃縮係数等を使う場合、下のようにいくつかの留意すべき事項がある。

- a) 濃縮係数、分配係数等は一般に非放射性物質について求められているので、短半減期核種へ適用する場合には入の効果で補正する必要がある。勿論この効果を無視すれば安全側評価となるが、評価精度の要求程度とのかね合いとなろう。
- b) 濃縮係数、分配係数は濃度に対する濃度の比として求められている。一方コンパートメントモデルでは総量で考えないと収支のバランスがくずれる場合が多い。この両者を結合するときには、(6)~(12)式の関係を考慮する必要がある。ただし、コンパートメント内の総量の間の大小関係が顕著で収支バランスに影響を与えないような状態であれば濃度対濃度比で推定が可能となろう。
- c) 各種係数と移行率は次のように対応しよう。

濃縮係数 $-\lambda_{wb}$, λ_{bw} , λ_{sb} , λ_{db} ,

分配係数 $-\lambda_{ws}$, λ_{sw} , λ_{wd} , λ_{dw} ,

沈降速度 - λ_{sd} , λ_{ds} , λ_{wd} , λ_{dw} ,

- (5)式からみられるように、両者の関係はこのままではかなり複雑である。これを簡単化するためには移行率間の大小をオーダー規模で把握できるとよい。例えば、 λ_{sb} , λ_{db} が十分小さければ、多分 $\lambda_{wb}/\lambda_{bw}=$ [濃縮係数] であることが期待できる。
- d) 濃縮係数、分配係数ともに濃度比であるのに対して移行率は時間率 (rate) である。したがって両者を対応させるためには移行率の比 (例えば $\lambda_{wb}/\lambda_{bw}$) を考える必要がある。また沈降速度は長さの次元を持っているので、懸濁物、底土のパラメータに関しては面積との間に適切な関係を考える必要があろう。

(2) 汽水湖モデル

汽水湖モデルに使われるパラメータについても前記の留意事項は考える必要があるが、これに加えて定常放出であっても平衡モデルが使えない(すなわち濃度が時間変化する)という特別な事項がある。さらに同一種生物の濃縮係数が淡水と海水で異なるという特殊事情がある。本報告では、簡単な汽水湖モデルといくつかの仮定を設定して考察を試みた。紙面の制約のため考察は十分ではないが、次の2点は考慮してよい課題であろう。

- a) 濃縮過程の研究から淡水、海水について λ_{bw} 、 λ_{wb} をそれぞれ直接求めること、
- b) (16)式が仮定として妥当かどうかわからないが、塩分濃度による λ_{bw} の変化を濃縮係数の差から推定すること(式中のパラメータ k の推定)。

5-2-3 モデル開発の国際的動向

最近数年にわたり、スウェーデン国立放射線防護研究所が主催して BIOMOVS計画という 国際共同研究が進められている。BIOMOVS (<u>Biospheric Model Validation Study</u>) 計画は、放射性物質あるいは微量元素の生態圏中移行を扱うために開発されたモデルを、実験及び 野外データまたはモデルの相互比較により検証するものである。OECD原子力機関加盟国の うち14ヵ国及びハンガリーの研究機関が参加しており、日本では原研がメンバーかつ国内 研究機関の窓口となっている。

この共同研究では多数の環境問題が対象としてとり上げられているが、この中に水銀の河川放出(アメリカの実測データによる検証)とチェルノビル事故後のセシウムの湖沼移行(スウェーデンの実測データによる検証)に関する問題が含まれている。このため原研、西ドイツ、スウェーデン、ハンガリー、アメリカなどがモデル開発を進めているが、まだ完成されていない。

本共同研究は第1期を1990年9月に終了し第2期へ進む予定となっているので、第1期の成果は報告書にまとめられ、1991年には公表されるであろう。

(飯嶋敏哲)

6. 濃縮係数等データー覧

6-1 日本における湖沼化学的データからの濃縮係数の試算

6-1-1 日本国内の湖沼・河川の化学的性質

国内における淡水の化学的性質について検討した例には、小林 純等の研究がある。 1)・2)・3) 1942年4月より15年を要した全国 225河川の調査および1972年10月より3年間に わたる 174河川・湖沼での再調査は、Ca、Mg、Na、FeやSr等の元素濃度、また、懸濁物や pH等のデータを提供している。これらの報告は東北地方の河川水について、CaやKが日本 全国の河川の平均値と比較した場合に10%程度低いこと、そして、それを反映して、水素 イオン濃度がやや酸性側に傾いていることを明らかにしている。すなわち、全国の河川水 のアルカリ度の平均値は $25.4 meq/\ell$ であるのに対し東北地方のそれは $17.1 meq/\ell$ であ り、pHは 7.1であるのに対して 6.5となっている。しかし、地域を限定し青森県東部につ いて比較すると、この地域の河川のpHは全国平均に近く東北の平均値よりはむしろ高いこ とが、また、Feの濃度については全国平均値の0.24ppmに対し0.36ppmとやや高く、懸濁物 は全国平均のほぼ半分となっている。これをさらに地域を限定し青森県小川原湖について 調べると、Ca、Mg、Na、K等のアルカリ土類、アルカリ元素がすべて高い濃度を示し、水質 がアルカリ寄りであることが示唆される。しかし、SO42- も全国平均の約2倍であり、結 果としてpHは 7.0で全国平均とほぼ同一の値を示している。水中の懸濁物は低く全国平均 の約1/7 である。これらの測定結果は同湖へ海水が流入することによってもたらされる様 々な現象を反映していると言うことができ、他の汽水湖においても同様な結果が得られる ものと考えられる。ところで小林 純等 1)の報告は日本全国の河川の水質を調査した例と して重要であるが、対象とする水質は主として水中の主要構成成分あるいはカチオン、ア ニオンのイオン対組成を対象としており、必ずしも本報告の興味とする微量元素組成を網 羅しているものではない。FeやSrなどについて重要な情報も含んでいるが、多くの安定元 素についてはその他の文献を検索し、あるいは、さらに測定結果を蓄積することが必要で

元素の濃度は全てにおいて低いレベルであることを示している。日下等50の兵庫県住吉川の調査結果もCaが全国平均より高く、逆にFeは1.3ppmとやや低いレベルであることを示している。これらの結果は、河川中の化学成分が地質や地形を反映している例である。

谷崎等のは東京都、多摩川の上流および干満により海水の流入する下流汽水域においては32元素のキャラクタリゼーションを行ったが、Na、K、Rb、Cs等のアリカリ元素についてはNa、K、Rbが下流でCsは上流部でそれぞれ高く、そして、Na、Kはすべて溶存態であり、また、Rbは46%が懸濁物として存在すること、さらに、Csは上流部では83%が懸濁物として、下流では85%が溶存態として存在していたとしている。Sc、V、Cr、Mn、Fe、Co、Ni、および、Zn等の元素についてはScとFeを除き他は上流部に高く、ScやFeが岩石の風化に起因するのに対し、他は人為的な汚染によるものであるとしている。La、Ce、Sm、Eu、Tb、Ho、Tm、YbおよびLu等の稀土類元素に関しては軽稀土(La~Eu)が上流部に、逆に重稀土(Tb~Lu)は下流域で高い。また、軽稀土はすべてが懸濁物と結合し、重稀土はその70~90%が溶存態であるとしている。As、Se、Sb、W、Uは主として溶存態で存在するが、A1およびAgは懸濁物として存在することを報告している。

河川水の安定元素濃度に関し国内のデータは少なく、あるとしてもその大部分は人為的 汚染に由来する元素に関したデータである。 6)・7) また、そこに棲息する生物の元素組成 に関する報告を論文の中から見出すことはさらに困難である。大規模な河川の元素濃度に ついて調べている例は、各都道府県の衛生研究所や公害センターが行う公共用水水域水質 調査結果がある。*) - 21) これらは各県の大・小河川・湖沼を上流から下流に至るまで調べ ているものであるが、これらの調査の目的は元素の生物濃縮現象の理解を目指した本報告 書の意図するものとはかならずしも一致しない。この中で安定元素として測定されるのは、 健康に係わり合いのある、または、有害元素としてのCd、Cr、As、Mn、Fe、Cu、Zn、Pb、 Hg等でこれらの結果は環境庁より毎年出版されている全国公共用水水質年鑑²² にまとめ られている。しかし、測定値が基準値以下である場合には数値の記載はないために本報告 書が採用し得る情報は少ない。生物に関しては棲息の有無と指標生物に関しての調査であ り元素の分析がその対象とはなっていない。この点では建設省河川局が刊行する水質年表゚゚゚ン が有効なデータを提供している。このような点に鑑みると、現在の国内の河川・湖沼の元 素組成等化学的状況を把握するめたには小林 純等3)の報告に、建設省水質年表、そして、 個々に発表されている情報を組み合わせることが最も有効な手段となるものと考えられる。 表6-1-1には日本国内河川の水質(元素組成)を示した。

一方、河川に棲息する生物等に関する環境調査は主として BODやCOD 、あるいは、大腸菌等につていであり安定元素分析を行っている例は少ない。しかも分析例の多くはHgやCd 等、既に問題の生じている地域における生物に関するものであり、本報告書とはその趣旨

を異にするものであり、引用できるものは多くはない。生物と河川水の元素濃度の報告値から濃縮係数を求めるためには河川水と生物の試料採取や分析に関して時間、空間における同時性等を満足する必要があるが、現在のところ利用できるデータは不足しておりこのような検討は困難、あるいは、不可能に近い状況であるというべきである。表 6-1-2 A、6-1-2 B はそれぞれ同一河川、同一地域の河川水と生物の元素濃度、および、それから求めた濃縮係数である。岩手・雫石川のウグイ 24)、 25)、同じく葛根田川における苔、アユ 26)、秋田県・小坂川のイワナ、アブラバヤ、ヒラタカゲロウ (7)、東京・多摩川 27)、 28)、佐賀県・瀬田川 29)等がその例である。本書の趣旨に添っているという点では、河川よりも福井県・三方五湖 30)、琵琶湖 31)、 32)、霞ヶ浦 33)等湖沼に関する調査が充実しているというこができる。淡水圏の分析データが少ない現状では湖沼に関する調査結果は貴重であり十分な利用がはかられる必要があろう。

フォールアウトデータに基づく濃縮係数の算出も本報告にあっては有効であると考えら れる。これらのデータは放射能調査結果として毎年報告されているが、対象となる地域は 限定され、通常対象核種となるのは、Cs-137および Sr-90のみである。ここで注意すべき ことは、エアロゾルとして水面や地表に沈着するフォールアウト核種は、水中の挙動が安 定元素のそれとは異なり、その結果相異なる濃縮係数が得られる可能性があることである。 しかし、CsやSrについては河川水と生物に関する報告が少なく、現状ではフォールアウト データに基づく算出法が最良の方法であるといえよう 34)。表 6-1-3 A(1)、表 6-1- 3 A (2) は全国 9 ヶ所の河川・湖沼の水および水棲生物の °°Srと¹°Cs濃度である。フォー ルアウト調査が対象としている地域は、①北海道・石狩町バラト湖(石狩川河口付近)、 ②秋田県·秋田市(雄物川河口付近)、③福島県·福島市(阿武隈川中流)、④茨城県· 霞ヶ浦、⑤長野県・諏訪湖、⑥新潟県・信濃川(鳥屋ノ潟)、⑦福井県・三方五湖、⑧京 都府・宇治川、⑨広島県・庄原町の9地区であり、水棲生物としてコイ、フナ(筋肉)お よびワカサギ(全身)が対象試料とされている。これらのデータは "Radioactivity Survey Data in Japan (RSD)"中に網羅されており上記の地方、生物種について濃縮係数を求める ことが可能である。ここでは、1980~1988年の間に RSDに報告されたデータに基づいて、 フナ、コイ、そして、ワカサギについて^{® o}Sr、¹⁸⁷Cs の濃縮係数を計算し、得られた平均 値を標準偏差とともに表 6 - 1 - 3 B(1)に示す。フナ、コイは、筋肉部の濃縮係数であり ワカサギは全魚体 (Whole Body) に対する濃縮係数である。表 6-1-3 B(2)に示される ように一般的に言えばフナよりもコイの * ° Sr、 ' * TCs の濃縮係数は高く、筋肉部が対象と されていることから「37Cs にわずかに高い濃縮傾向が認められる。

以上安定元素およびフォールアウトデータから濃縮係数を試算したが、河川水について は小林 純等による報告などのように報告例が比較的多いのに比べ、河川生物の安定元素 濃度に関する報告例は少ない。河川水の元素濃度との関係に着目し測定され公表された分 析結果はさらに限定されたものとなっている。このようなデータの不足は河川水域で精度 の高い濃縮係数を求めることを困難にしている。本報告では河川とともに湖沼、特に汽水 湖における元素の水棲生物による濃縮現象が大きな関心となっているが、湖沼や汽水湖に 関しての報告例は河川に関するものより充実しており、より多くの状況に関する濃縮係数 の試算が可能である。そこで、湖沼に関する水および生物中の安定元素濃度をそれぞれ表 6-1-4 A(1)、表 6-1-4 A(2)に、そして、これらより求められる濃縮係数を表 6-1-4 B に示す。 $^{29), 30), 31), 32), 33), 35), 36), 37) 表 <math>6-1-4$ B に示されているよ うに安定元素データから導かれる淡水生物の濃縮係数は多くが103~105の間にあり、ある 種の生物では10°を越える。ここで示されている値は、概ね、そのオーダーにおいて Coughtrey, P.J. 等 38) の総説にまとめられた値に一致している。特に、琵琶湖における Znの水棲植物クロモに関する濃縮係数、2.2×10⁴、また、シジミ (可食部) の3.34×10⁴ の値は、Coughtrey, P.J. 等の値、水棲植物の2×10′、二枚貝の 1.1×10′と非常によ い一致を示している。また、フォールアウトデータから求めたコイの゚゚゚Srおよび'゚゚゚てs の 濃縮係数の平均値、4.4×10°および6.4×10°も上記の総説中に示されている1×10°、2× 10°とほぼ一致する。このように、既往のデータとわが国の測定結果から試算した濃縮係 数は、野外実験で得られたデータについてはよい一致が認められる。しかし、室内実験で 得られたデータについてはこのような一致が必ずし認められるとは限られない。すなわち、 Srの例では室内実験で得られたデータは野外実験で得られたものの、1/10~1/100 である という報告がある39)。

ほとんどの元素は水中で水和され、あるいは、水和の進行しないアルカリ、アルカリ土類においても水中の有機・無機懸濁物に収・吸着し、時間の経過とともに系外に除去される。そこで新たな元素の流入のない限り濃縮係数算出の際に分母にとる水中の元素濃度はその分だけ小さな値となり、結果として得られる濃縮係数は大となる。この傾向は放射性物質を用いた取り込み実験でしばしば観察され、室内実験で得られたデータから濃縮係数を求めるときのバラツキを生じる理由とされている。しかし、これはすべての元素に共通の現象であり、元素が放射性か否かの問題ではないというべきである。室内実験と野外実験の結果に差が生じる理由は、第一には、従来から言われているように元素の物理・化学的形態に起因していると考えられるが、水中濃度を求める際の試料処理過程の相違がこの

差が生じる一因になっていることにも留意する必要がある。すなわち、野外実験において は報告の多くが指針に従い河川・湖沼水をメンブレンフィルター (0.45μm)あるいは少な くともワットマンNo.6程度のろ紙でろ過する操作を採用し通過画分を棲息環境水とし、そ の濃度を濃縮係数算出の際の分母としている。ところが室内実験においては環境水はろ過 することなく使用され、その濃度を分母として濃縮係数が求められる。前者の場合は懸濁 物の除去によりより小さな値が分母に用いられ、その結果濃縮係数はより大きなものとな り、後者は有機・無機懸濁物も含む濃度を分母としているために元素の濃度は大となり求 める濃縮係数は小となる。このことが室内実験結果に基づく濃縮係数、フォールアウトデ ータに基づく濃縮係数、そして、野外実験で安定元素の測定データから算出した結果の差 を生じる一つの原因となっているものと考えられる。したがって、淡水生物における元素 の濃縮係数を求めるためには、懸濁物を評価に入れる算出方法とろ過水に対して算出する 方法のいずれを採用すべきかという問題に十分な検討が必要であろう。生物が体内に蓄積 する元素は、かならずしも環境水中の元素のイオンあるいは可溶性粒子のみの吸収に由来 するものでなく、懸濁物粒子が経口的に、あるいは、鰓による呼吸の過程で一部が消化管 に送られるなど、懸濁粒子の吸収にも由来している。結果的には可溶性の元素の体内蓄積 と同様な現象が生じることになる。このようなことから分母には懸濁物をふくめた水中の 元素濃度を用いて求めた濃縮係数が本来の値に近いものとなると考えることができよう。 本章を終えるにあたり、湖沼に棲息する生物の元素の濃縮係数を懸濁物という因子を考慮 に入れ、上述の値から濃縮係数を誘導した。第6-1-5表にはその結果を示す。

淡水圏に棲息する生物の種々な元素の取り込みを濃縮係数という概念で表現するときには、水中における当該元素に係わる様々な現象を把握し考慮に入れることが重要であり、 それによって実態に即した評価が可能となるということができよう。

河川名	所 在	E 地	рН	蒸留残渣	浮遊物	Na	Mg	K	Са	Сr	Mn	Fe	Cu	Zn	A s	Cd	Нg	Рb		k質年表 (3)番号
平性川	天塩郡信内天塩	梧	6.6	61.5	62. 3	7. 0	2, 2	1.20	5.3		0.01	0. 28		0.006					中川	10106
石狩川		1PV	6. 7	108.8	171.5	12. 1	3. 1	1.30	10.8		0.13	1.17		0.019	0.002				新江別橋	10323
1	中川郡豊頃村		6. 7	73, 8	43.7	5.1	1.4	1.80	6.6		0.02	0.46		0.006					千住橋	10808
	青森県五所ヶ原	市五所ヶ原町	6.8	96, 6	31.2	11.6	2.7	1.41	8.3		0.11	0.73	0.02	0.04					平川橋	20104
	上野・高瀬川	element a man a	6.6	59. 0	2.6	8. 4	1.3	0.79	3.3		0.04	0.08	0.01	0.01					高瀬川上野	20701
葛根田川	岩手県岩手郡雫	石町									0.04				0.006					
雫石川	岩手県岩手郡雫											100								
広瀬川	宮城県仙台市		7.1					1.1	4.8			0.02								
阿武隈川	宮城県伊具郡丸	森町丸森橋上流	6.9	92.5	17. 1	7, 6	2.2	1.32	10.3			0.26	0.01	0.014					信夫橋	21309
小坂川	秋田県秋田郡鷹	巣町米代川支流											0.00073	0.01		0.00004				
最上川	山形県飽海郡松	·LIET	6.8	73.0	34.9	8.3	1.8	1.30	6.2			0.44	0.005	0.016	ND	ND	ND	ND	稲下	20511
久慈川	茨城県那珂郡大	宮町富岡橋下流	7.0	58. 7	5.8	5.0	1.7	1.08	8. 1	ND	0.02	0.10	0.006	0.005	ND	ND	ND	ND	富岡橋	31002
那珂川	茨城県東茨城郡	桂村船渡千代橋	7.1	79.5	19.7	6.3	2.3	1.19	9.3	ND	0.01	0.13	ND	0.009	ND	ND	ND	ND	下国井	32005
利根川	千葉県佐原市		7.1	96. 4	18.7	7.6	3.0	1.55	13.0	0.03	0.26	0.23	0.017	0.06	ND	ND	ND	ND	平代橋	33871
多摩川	神奈川県川崎市	小田急線登戸	7.1	93. 3	2.5	5. 4	3.1	1.04	14.5	0.00042	0.077	0.29	0.005	20.02	0.00054	ND	ND	ND	大師橋	35013
信濃川	新潟県小千谷市	į	6.9	77.8	39. 2	6.4	2, 0	1.82	8.1		0.03	0.21	ND	ND	ND	ND	ND	0.01	万代橋	40311
九頭竜川	福井県吉田郡志	此村東古市	7.2	55. 9	6.3	4.5	1.9	0.63	9.4			0.04	ND	0.2	ND	ND	0.009	ND	日光橋	60810
天竜川	静岡県磐田郡二	俣町鹿島橋上流	7.3	67.8	38.8	3.7	2.3	1.17	13.1	ND	ND	0.28	ND	ND	0.003	ND	ND	ND	鹿島橋	50611
木曽川	愛知県可児郡兼	LIET	6.7	47.3	4.3	3. 1	0.7	0. 98	5.2	ND	0.01	0.08	0.010	0.02	ND	ND	ND	0.07	長良東海大橋	51207
淀川	大阪府寝屋川市	木屋477場水場	6.9	58. 0	35.0	5. 9	1.3	1.45	7.7	ND	0.19	0.44	0.02	0.0420	ND	ND	ND		駄六川流口	60518
住吉川	兵庫県神戸市濱	区住吉町	7.3					1.18	13.2		0.0052	0.01	0.00075	0.00220						
高梁川	岡山県倉敷市酒	律	7.4	67.2	9.1	4.5	1.7	0, 95	13.2	0.030		0.01	0.010	0.030	ND	ND	ND	ND	松尾橋	71203
筑後川	福岡県三井郡大	刀荒町大堰	7. 1	105. 7	112.9	7.8	2.3	2, 55	9.2	ND	0.34		ND	0.02	0.002	ND	ND	ND	三隅大橋	90504
球磨川	熊本県八代市		7.2	72.5	2.0	4.0	1.8	0.89	10.2	ND ND	0.00		ND	0.02	ND	ND	ND	ND	横石	91105

表6-1-2 A表 河川及び生物中の安定元素濃度

(河川水: ppb)

(生物:ppb in dry)

河川・生物	元素名	K	Cr	Mn	Fe	Со	Cu	Zn	As	Sr	Cd	Sb	Cs	La	Нg	備考
東京 多摩川 とががかどが	(全体) (筋肉)	6300 1. 2×10 ⁷	0. 416 29000 114	76. 5 490000	289 1.5×10 [†] 39996	0. 433 5700		10. 2 260000 94000	0.535 10000	159 8999		0. 258 600	0. 053 3700 50995	0. 097 2600		Personal Communication
秋田 小坂川 イワナ ヒラタカゲロ・ 藻	(筋肉) ウ (全体) (全体)						0.73* 13660 25000 150000	10* 450000 220000			0.04* 2100 20000 7000		*			文献(7) * 上流部
岩手県 零石川 ウグイ アユ 苔	(筋肉) (筋肉) (全体)			1546 19500 348520	100 32178 55000 5.87×10 ¹		788 3140 66300	61300 55450 265000	ND ND		ND ND ND				1666 91 1262	文献(24),(25)
岩手県 葛根田 苔	(全体)			40 1.86×10 ^s					6 34170							文献(26)

表6-1-2 B表 河川生物の乾物に対する安定元素濃縮係数

河川・生物	元素名	K	Сг	Mn	Fe	Со	Cu	Zn	A s	Sr	Cd	Sb	C s	La	備考
東京多摩川と行動がど行フナ	(全体) (筋肉)	1900	69710 274	6410	51900 138	13160		25490 9216	18700	57		2330	6. 98×10 ⁴ 9. 62×10 ⁵	2.68×10°	Personal Communication
秋田 小坂川 イワナ ヒラタカゲロ 藻	(筋肉) ウ (全体) (全体)	-					18710 34250 205400	45000 22000			5. 25×10° 5×10° 1. 75×10°				文献(7) * 上流部
岩手県 零石川 ウグイ アユ 苔	(筋肉) (筋肉) (全体)				322 550 5. 873×10 ⁵										文献(24), (25)
岩手県 葛根田	(全体)			46600					5700						文献(26)

第6-1-3A(1)表 河川・湖沼のSr-90,Cs-137濃度

河川名	рĦ	Sr-90(pCi/1)	Cs-137(pCi/l)	備考
茨城県・霞ヶ浦	9.0	0.27 ±0.009	0.05 ±0.005	NIRS-RSD-53
長野県・諏訪湖	7.4	0.05 ±0.005	0.01 ±0.004	(1980)
福井県・三方五湖	7.6	0.19 ±0.009	0.03 ±0.004	未濾過
京都府・宇治川	6.3	0.004 ± 0.003	0.00 ±0.003	
広島県・庄原町	7.4	0.11 ±0.007	0.003±0.003	
北海道・石狩川(河口)	7.3	0.100±0.006	0.020±0.004	NIRS-RSD-64
秋田県・雄物川(秋田市)	7.3	0.140 ± 0.007	0.010±0.003	(1983)
茨城県・霞ヶ浦	8.7	0.150 ± 0.007	0.030 ± 0.004	未濾過
長野県・諏訪湖	7.9	0.050 ± 0.005	0.010±0.003	
福井県・三方五湖	7.0	0.250 ± 0.009	0.070±0.005	
京都府・宇治川	6.3	0.010 ± 0.003	0.002±0.002	
福島県・阿武隈川	7.1	0.05 ±0.005	0.01 ±0.003	NIRS-RSD-66
新潟県・信濃川	6.7	0.23 ±0.009	0.10 ±0.006	(1983)
福井県・三方五湖	6.9	0.12 ±0.006	0.01 ±0.003	未濾過
長野県・諏訪湖	7.2	0.04 ± 0.004	0.01 ±0.002	
京都府・宇治川	7.4	0.00 ± 0.003	0.00 ±0.002	
北海道・石狩川(河口近く)	7.3	0.14 ±0.008	0.02 ±0.003	NIRS-RSD-70
秋田県・秋田市・雄物川	7.2	0.10 ± 0.006	0.02 ±0.003	(1984)
福島県・阿武隈川(福島市)	6.6	0.04 ± 0.004	0.003 ± 0.002	未濾過
新潟県・新潟・信濃川	7.2	0.19 ± 0.008	0.02 ±0.003	10000000000000000000000000000000000000
長野県・諏訪湖	8.6	0.05 ± 0.005	0.01 ±0.002	
福井県・三方五湖	7.4	0.15 ±0.009	0.04 ±0.004	
広島県・庄原町	6.9	0.07 ± 0.005	0.002±0.002	
京都府・宇治川	6.4	0.001 ± 0.002	0.004±0.002	
茨城県・霞ヶ浦	8.0	0.11 ±0.006	0.02 ±0.003	NIRS-RSD-72
	8.5	0.16 ±0.007	0.03 ±0.004	(1985) 未濾過
茨城県・霞ヶ浦	8.1	0.15 ±0.007	0.32 ±0.010	NIRS-RSD-76
北海道・バラト湖・石狩川河口	7.2	0.08 ±0.005	0.10 ±0.006	(1986)
				未濾過
秋田県・雄物川・河口	6.8	0.15 ±0.007	0.04 ±0.005	NIRS-RSD-78
福島県・福島市・阿武隈川	6.7	0.06 ±0.005	0.02 ±0.003	(1987)
新潟県・鳥屋野潟	6.9	0.18 ± 0.008	0.04 ±0.004	未濾過
広島県・庄原町	6.9	0.06 ±0.005	0.01 ±0.003	
福井県・敦賀	7.0	0.21 ±0.009	0.15 ±0.006	
長野県・諏訪湖	8.2	0.04 ± 0.004	0.02 ±0.003	
京都府・宇治川	6.4	0.01 ±0.003	0.01 ±0.002	
秋田県・雄物川・河口	6.3	0.11 ±0.006	0.02 ±0.004	NIRS-RSD-82
福井県・三方五湖	6.7	0.22 ±0.009	0.13 ± 0.007	(1988)
福島県・阿武隈川	6.6	0.07 ±0.005	0.01 ± 0.002	未濾過
新潟県・鳥屋野潟	6.7	0.18 ±0.005	0.03 ± 0.004	
広島県・庄原町	6.8	0.06 ±0.003	0.01 ±0.003	

第6-1-3A(2)表 淡水生物中のSr-90, Cs-137濃度

河 川 名	Sr-90(pC1/kg)	Cs-137(pC1/kg)	備考
(Carassius Carassius Cuvien)ヘラブナ	-		NIRS-RSD-52
新潟県・信濃川	120 ± 2	12 ± 0.5	(1980)
(Carassius auratus)フナ	+		未濾過
新潟県・信濃川	91 ± 1.7	7.7 ± 0.48	765
福井県・三方五湖	2.3 ± 0.42	(8.42) (ST) (ST)(ST)	
	40 ± 1.0		
北海道・石狩川	40 I 1.0	7.8 ± 0.45	-
(Hypomesus olidus)ワカサギ			
長野県・諏訪湖	7.3 ± 0.46	6.7 ± 0.38	*フナ・コイ
(Cyprinus carpio)コイ	1274 10 17102	200 0 2020	可食部
秋田県・雄物川	63 ± 1.2		*ワカサギ
福島県・阿武隈川	36 ± 1.2	11 ± 0.5	全魚体
広島・庄原町	14 ± 0.6	10 ± 0.5	
(Cyprinus carpio)コイ			NIRS-RSD-65
秋田県・雄物川	43.00± 1.00	42.00± 1.10	(1983)
(Carassius auratus) フナ			NIRS-RSD-67
北海道・バラト湖・石狩下流	45.0 ± 1.10	3.4 ± 0.31	(1983)
新潟県・鳥屋野潟・信濃川	5.5 ± 0.66		
福井県・三方五湖	3.0 ± 0.63	8.5 ± 0.64	
京都府・宇治川	49.0 ± 1.30		
	43.0 I 1.30	3.0 T 0.34	-
(Cyprinus carpio) ⊐ 1	21 0 1 1 44	20100	
福島県・阿武隈川	31.0 ± 1.00		
広島県・広島・太田川	3.0 ± 0.48	7.7 ± 0.50	
(Hypomesus olidus)ワカサギ			
長野県・諏訪湖	3.8 ± 0.40	3.1 ± 0.31	
(Carassius auratus)フナ			NIRS-RSD-71
北海道・バラト湖・石狩川河口近く	38 ± 1.1	3.0 ± 0.28	(1984)
新潟県・鳥屋野潟・信濃川	6.2 ± 0.43	5.1 ± 0.33	
福井県・三方五湖	4.3 ± 0.63	11 ± 0.7	
京都府・宇治川	60 ± 1.4	2.2 ± 0.28	
(Cyprinus carpio)コイ			1
秋田県・雄物川・河口近く	96 ± 1.7	9.7 ± 0.49	
福島県・阿武隈川(福島市)	23 ± 0.8	1.9 ± 0.26	
	23 ± 0.6	1.3 I 0.26	
(Hypomesus olidus)ワカサギ	10012 12032000		
長野県・諏訪湖	4.6 ± 0.44	5.6 ± 0.40	
(Cyprinus carpio)コイ	1208507 50 50005	V2 AV BA NOVARSCI	NIRS-RSD-75
秋田県・雄物川・河口付近	110 ± 2	4.0 ± 0.33	
福島県・福島市・阿武隈川	38 ± 1.3	2.7 ± 0.35	
広島県・庄原町	1.4 ± 0.43	4.6 ± 0.46	
(Carassius auratus)フナ			
北海道・バラト湖・石狩川河口近く	33 ± 1.0	3.4 ± 0.32	
新潟県・鳥屋野潟・信濃川河口	2.8 ± 0.32	4.9 ± 0.31	
福井県・三方五湖	3.7 ± 0.54		
(Hypomesus olidus)ワカサギ	······		1
長野県・諏訪湖	4.2 ± 0.38	2.8 ± 0.27	
(Cyprinus carpio) ⊐ 1	7.0 I V.30	2.0 1 V.21	NIRS-RSD-79
秋田県・秋田市・雄物川	180 ± 2	31 ± 0.8	(1987)
			(1367)
福島県・福島市・阿武隈川	57 ± 1.2	6.7 ± 0.40	1
広島県・庄原町	1.2 ± 0.34	7.6 ± 0.43	
(Carassius auratus)フナ		1245 M. 1707 - 124 M. 174	
北海道・バラト湖・石狩川河口近く	31 ± 0.9	11 ± 0.5	
新潟県・鳥屋野潟	4.4 ± 0.47	27 ± 0.8	
福井県・三方五湖	22 ± 0.8	1.2 ± 0.21	
京都府・宇治川	53 ± 1.4	12 ± 0.5	
(Hypomesus olidus)ワカサギ		***************************************	1
長野県・諏訪湖	3.6 ± 0.43	9.8 ± 0.47	
(Cyprinus carpio) ⊐ 1			NIRS-RSD-83
秋田県・雄物川	40 ± 1.1	24 ± 0.8	(1988)
福島県・阿武隈川	27 ± 0.7	6.9 ± 0.4	(,,,,,,
広島県・庄原町	2.9 ± 0.28	6.0 ± 0.42	
	2.3 ± 0.28	0.0 ± 0.42	
(Carassius auratus) 7 +	04 4 4 4	0.0 1.0 74	
北海道・バラト湖	24 ± 1.0	9.3 ± 0.50	
新潟県・鳥屋野潟	3.1 ± 0.29	11 ± 0.5	
福井県・三方五湖	11 ± 0.4	12 ± 0.5	
(Hypomesus olidus)ワカサギ			
長野県・諏訪湖	3.4 ± 0.27	5.4 ± 0.38	

第6-1-3B(1)表 淡水生物の乾物に対するSr-90, Cs-137濃縮係数

河	Щ	(生物名)	Sr-90-CF	Cs-137-CF	備考
長野県	・諏訪湖	(ワカサギ)	146	670	NIRS-RSD-52/53
福井県	・三方五湖	(フナ)	12.1	500	(1980)
広島県	・庄原町	(コイ)	127	-	\$ \$77
北海道	・石狩川・バラト湖	(フナ)	450	170	NIRS-RSD-65/64
秋田県	・雄物川	(コイ)	307	-	NIRS-RSD-67/64
福井県	・三方五湖	(フナ)	12.0	121	(1983)
長野県	・諏訪湖	(ワカサギ)	76	310	ALC: TO A STANCE OF
北海道	・石狩川・バラト湖	(フナ)	271	150	NIRS-RSD-71/70
新潟県	・鳥屋野潟	(フナ)	32.6	255	(1984)
福井県	・三方五湖	(フナ)	28.7	275	9,710,40,100,000
秋田県	・雄物川・河口	(コイ)	960	485	
福島県	· 阿武隈川	(コイ)	575	630	
長野県	・諏訪湖	(ワカサギ)	92	560	
北海道	・石狩川・バラト湖	(フナ)	388	110	NIRS-RSD-79/76
新潟県	・鳥屋野潟	(フナ)	24	675	NIRS-RSD-79/78
秋田県	・雄物川・河口	(コイ)	1200	775	(1986,1987)
福島県・	· 阿武隈川	(コイ)	950	335	
広島県・	· 庄原町	(コイ)	20	760	
長野県・	·諏訪湖	(ワカサギ)	90	490	
新潟県・	鳥屋野潟	(フナ)	17	367	NIRS-RSD-83/82
福井県	・三方五湖	(フナ)	50	92	(1988)
秋田県	・雄物川・河口	(コイ)	363	1200	
福島県	· 阿武隈川	(コイ)	385	690	
広島県・	· 庄原町	(コイ)	48	600	

第6-1-3B(2)表 1980~1988までの報告値から算出される淡水生物の乾物に対する濃縮係数

137Cs	272±192	684 ± 254	508 ± 151
報告回数	(10回)	(国8)	(40)
90Sr	192±172	494±415	101± 31
報告回数	(10回)	(10回)	(40)
核種生物	77	71	7544

第6-1-4A(1)表 湖沼水・潟湖水の安定元素濃度 (ppb)

元素 湖沼・海	K.	Ca	Cr	Мп	Fe	Со	Ni	Cu	Zn	Sr	Мо	Cd	Hg	Pb	備考
霞ヶ浦 (沖水)			<5	74	1300	<2	2	3	11			<0.5	<0.5	<10	文献(37)
三方五湖 三方湖 水月湖 帝 湖 久々子湖 日向湖			1. 7 13. 6 22. 7 32. 7	247 92 73 35 0.6	. *			7. 4 8. 8 8. 8 12. 6 0. 8	6. 5 7. 2 4. 9 5. 0 2. 7	•		7. 2 8. 4 10. 1 18. 0 0. 7		14. 0 57. 3 64. 5 95. 4 2. 8	文献(30) No.5Cろ過
琵琶湖(北) 湖水 懸濁物*	1000	9000	0.2 6.6×10 ⁵	5 3.66×10 ⁶	40 2.35×10 ⁷	0.03 2×10 ⁵	3.5 5.1×10 ⁵	2. 5 2. 89×10 ⁷	5 3. 2		0. 42 1. 17×10°	1. 3 . 8×10 ⁴		0.5 1.03×10 ⁶	文献(31),(32)
琵琶湖(南) 湖水 懸濁物 [*] 湖水+懸濁物	1200	9000 9037	0. 6 2. 4×10 ⁵ 0. 897	32 7.37×10° 37.84	170 2.53×10 ⁷ 375	1. 18 4×10 ⁴ 1. 385	8.5 2.9×10 ⁵ 8.851	2. 5 1. 05×10 ⁷ 2. 895	7. 1 3. 4 8. 76		0.6 8.7×10 ⁵	0.7 9×10 ⁴		1. 4 8×10 ⁵ 1. 653	文献(31),(32)

^{*} ppb in dry

第6-1-4A(2)表 淡水生物中の安定元素濃度

~ 10000	水分							元	素 (ppl	in dry)								備考
湖沼/生物	(%)	K	Ca	Cr	Ип	Fe	Co	Ni	Cu	Zn	Sr	Cd	Cd	Cs	Ce	Hg	Pb	報づ
霞ヶ浦/ ジュー・(身) ウナキー・(身) ウナキー・(今) カサー・(全体) カナー・(全体) フナー(内) フナー(内) コイ・(内) コイ・(内) エナー・(全体) エナー・(全体) エナー・(全体) エナー・(全体) ドン・(全体) ドン・(全体) エナー・(全体) ドン・(大) 「中) 「中) 「中) 「中) 「中) 「中) 「中) 「中	76 84 92 77 78 85 91 83 93 79 84 84			5832 < 500 < 500 < 500 2772 < 500 < 500 < 500 < 500 < 500 < 500 < 100 < 100	1. 37×10 ⁴ 2. 73×10 ⁴ 4. 99×10 ⁴ 1. 66×10 ³ 1. 44×10 ⁴ 2. 88×10 ³ 2. 57×10 ⁴ 2. 63×10 ³ 1. 75×10 ⁴	3.06×10 ⁴ 1.31×10 ⁵	< 50 < 50	15830 < 500 < 500 < 500 6817 < 500 < 500 5293 < 500 5714 437 1250	5. 42×10 ⁴ 1. 38×10 ³ 1. 75×10 ⁵ 3. 99×10 ⁴ 5. 45×10 ⁴ 3. 07×10 ⁴ 1. 67×10 ⁵ 7. 65×10 ⁴ 1. 23×10 ⁵ 1. 14×10 ⁴ 3. 31×10 ³ 7. 5×10 ³	1. 42×10 ⁵ 1. 25×10 ⁵ 1. 38×10 ⁵ 1. 35×10 ⁵ 8. 64×10 ⁴ 9. 33×10 ⁴ 5. 78×10 ⁵ 7. 06×10 ⁴ 1. 86×10 ⁵ 8. 57×10 ⁴ 2. 06×10 ⁴ 1. 75×10 ⁵		1458 < 100 5625 695 1136 < 100 1111 < 100 2785 571 < 10 < 10	1458 < 500 5625 695 1136 < 100 1111 < 100 2785 571 < 10 < 10			- - < 5 < 5 < 5 < 5 < 5 < 38	3375 540 < 500 < 500 < 500 < 500 < 500 < 500 < 500 < 500 1250	文献(37)
程程湖(北) / ケイソウ クロモ フザモ オオカナケ・モ セシ (実) セシ (実) ヒシ (根) マラジ・ミ (肉) カワニナ (肉) かケチョウか・イ (肉) カラスか・イ (肉) オオケニシ (肉)		4.5 ×10 ⁶ 3.86×10 ⁷ 2.89×10 ⁷ 5.7 ×10 ⁷ 1.66×10 ⁷ 1.74×10 ⁷ 4.14×10 ⁷ 4.11×10 ⁶ 4.71×10 ⁶ 5.69×10 ⁶ 5.6 ×10 ⁶	4.8 × 10 ⁶ 1.33×10 ⁷ 7.3 × 10 ⁶ 9.9 × 10 ⁶ 1.35×10 ⁷ 4.7 × 10 ⁶ 1.91×10 ⁷ 6.8 × 10 ⁶ 8.15×10 ⁷ 1.11×10 ⁷ 3.05×10 ⁷ 7.87×10 ⁷	1400 2600 6100 7200 11200 5500 7500	5 × 10 ⁴ 3.3 × 10 ⁶ 1.9 × 10 ⁶ 4.2 × 10 ⁶ 1.4 × 10 ⁵ 7 × 10 ⁵ 1.89 × 10 ⁶ 3.4 × 10 ⁴ 9.6 × 10 ⁵ 1.83 × 10 ⁶ 5.67 × 10 ⁵ 7.2 × 10 ⁴	4 × 10° 2.5 × 10° 2.6 × 10° 5.8 × 10° 4.3 × 10° 1.1 × 10° 1.65 × 10° 1.65 × 10° 2.24 × 10° 3.47 × 10° 9.9 × 10°	2000 3400 3400 2100 3200 1500 5600 19000	4500 1800 7400 3200 4900 16600 1500 44900	6.8 ×10 ⁴ 1.2 ×10 ⁴ 1.8 ×10 ⁴ 1.3 ×10 ⁴ 7 ×10 ³ 3 ×10 ³ 5 ×10 ³ 3 ×10 ⁴ 5.1 ×10 ⁴ 1 ×10 ⁴ 5 ×10 ³ 2.01×10 ⁵	2. 6 × 10 ⁵ 1. 1 × 10 ⁵ 1. 8 × 10 ⁵ 1. 1 × 10 ⁵ 6. 0 × 10 ⁴ 4. 0 × 10 ⁴ 1. 8 × 10 ⁵ 1. 67 × 10 ⁵ 1. 68 × 10 ⁵ 1. 17 × 10 ⁵ 1. 92 × 10 ⁵ 5. 48 × 10 ⁵	18000 17000 25000 23000 9000 46000 1200 29300 24900			360 450 — 250 — 190	3600 5300 3000 1000 800 1900		-	文献(36)
琵琶湖 (北) /	78 78 78 76 94 90 78 78 78 76 94 92				7. 32×10 ³ 3. 28×10 ⁴ 4. 99×10 ⁵ 4. 54×10 ⁴ 1. 49×10 ⁷ 3. 28×10 ⁶ 2. 35×10 ⁴ 1. 24×10 ⁵ 7. 51×10 ⁵ 6. 66×10 ⁶ 9. 87×10 ⁵			454 409 1227 1208 4465 0.00 363 136 1182 6082 20539 4431	1. 15×10 ⁴ 4. 59×10 ³ 5. 04×10 ³ 1. 56×10 ⁵ 2. 63×10 ⁴ 3. 15×10 ⁴ 5. 13×10 ³ 4. 55×10 ³ 9. 82×10 ³ 1. 43×10 ⁵ 5. 39×10 ⁴ 1. 46×10 ⁵	9. 18×10 ⁴ 2. 35×10 ⁵ 1. 20×10 ⁵ 4. 71×10 ⁵ 2. 38×10 ⁵ 1. 24×10 ⁵ 2. 83×10 ⁵ 3. 27×10 ⁵ 9. 41×10 ⁴ 3. 29×10 ⁵ 6. 25×10 ⁵ 1. 67×10 ⁵						114 23 136 166 2143 0.00 77 50 41 374 1429 253	1408 1636 2318 0.00 5179 0.00 182 0.00 11089 1624 201818 3798	文献(29) 水分%は 文献(37)を引用 水分%は 文献(37)を引用

第6-1-4B表 湖沼生物の乾物に対する安定元素濃縮係数(生物中濃度/湖水中濃度)

								元	素 (ppb	in dry)					,	
湖沼/生物	K	Ca	Cr	Мп	Fe	Со	Ni	Cu	Zn	Sr	Мо	Cd	Cs	Се	Hg	Pb
を登湖 (北) / ケイソウ ウロモ アサモ ははかナタ・モ ヒジ (実) ヒジ (根) マジ・ミ (身) かりこさ (肉) カラスカ・イ (肉) はオケニシ (肉)	4.50×10 ³ 3.86×10 ⁴ 2.89×10 ⁴ 5.70×10 ⁴ 1.66×10 ⁴ 1.74×10 ⁴ 4.19×10 ³ 4.71×10 ³ 2.37×10 ³ 5.69×10 ³ 5.60×10 ³	5. 33×10 ² 1. 48×10 ³ 8. 11×10 ² 1. 10×10 ³ 1. 50×10 ³ 5. 22×10 ² 2. 12×10 ³ 7. 56×10 ² 9. 06×10 ³ 1. 23×10 ³ 3. 39×10 ³ 8. 74×10 ³	7. 00×10 ³ 1. 30×10 ⁴ 3. 05×10 ⁴ 3. 60×10 ⁴ 5. 60×10 ⁴ 2. 75×10 ⁴ 3. 75×10 ⁴	1.00×10 ⁴ 6.60×10 ⁵ 3.80×10 ⁵ 8.40×10 ⁵ 2.80×10 ⁵ 1.40×10 ⁵ 3.78×10 ⁵ 6.80×10 ³ 1.92×10 ⁵ 3.66×10 ⁵ 1.13×10 ⁶ 1.44×10 ⁴	1. 00×10 ⁵ 6. 25×10 ⁴ 6. 50×10 ⁴ 1. 45×10 ⁴ 1. 08×10 ⁴ 2. 75×10 ⁴ 4. 13×10 ⁴ 4. 13×10 ⁴ 4. 00×10 ⁴ 5. 60×10 ⁴ 8. 68×10 ⁴ 2. 48×10 ⁴	6. 67×10 ⁴ 1. 13×10 ⁵ 1. 13×10 ⁵ 7. 00×10 ⁴ 1. 07×10 ⁵ 5. 00×10 ⁴ 1. 87×10 ⁵ 5. 00×10 ⁴ 6. 33×10 ⁵ 5. 00×10 ⁴ 1. 67×10 ⁴	1. 29×10 ³ 5. 14×10 ² 2. 11×10 ³ 9. 14×10 ² 1. 40×10 ³ 4. 74×10 ³ 4. 29×10 ² 1. 28×10 ⁴ 1. 14×10 ² 2. 57×10 ²	2. 72×10 ⁴ 4. 80×10 ³ 7. 20×10 ³ 5. 20×10 ³ 2. 80×10 ³ 1. 20×10 ³ 2. 00×10 ³ 1. 20×10 ⁴ 4. 00×10 ³ 2. 00×10 ³ 2. 00×10 ³ 8. 04×10 ⁴	5. 20×10 ⁴ 2. 20×10 ⁴ 3. 60×10 ⁴ 2. 20×10 ⁴ 1. 20×10 ⁴ 1. 20×10 ⁴ 8. 00×10 ³ 3. 60×10 ⁴ 3. 36×10 ⁴ 2. 34×10 ⁴ 3. 84×10 ⁴ 1. 10×10 ⁵				•		**	
琵琶湖(北)/ フナ(全体) フナ(全体) フィ(全体) ドメケニシ(全体) はカナタ・モ 丁カナケ・モ 琵琶湖(南)/ フナ(全体) フナ(全体) フィ(全体) フィ(全体) フィ(全体) フィ(全体)				1. 46×10 ³ 6. 56×10 ³ 9. 98×10 ⁴ 9. 08×10 ³ 2. 98×10 ⁶ 6. 56×10 ⁵ 7. 34×10 ² 3. 88×10 ³ 2. 35×10 ⁴ 2. 08×10 ⁵			1. 30×10 ² 1. 17×10 ² 3. 51×10 ² 3. 45×10 ³ 1. 28×10 ³ 4. 27×10 ¹ 1. 60×10 ¹ 1. 39×10 ² 7. 16×10 ² 2. 42×10 ³	4.60×10 ³ 1.84×10 ³ 2.02×10 ³ 6.24×10 ⁴ 1.05×10 ⁴ 1.26×10 ⁴ 2.05×10 ³ 1.82×10 ³ 3.93×10 ³ 5.72×10 ⁴ 2.16×10 ⁴	1.84×10 ⁴ 4.70×10 ⁴ 2.40×10 ⁴ 9.42×10 ² 4.76×10 ⁴ 2.48×10 ⁴ 3.99×10 ⁴ 4.61×10 ⁴ 1.33×10 ⁴ 4.63×10 ⁴ 8.80×10 ⁴							2.82×10 3.27×10 4.64×10 1.04×10 1.30×10 7.92×10 1.16×10 1.44×10

第6-1-5表 湖沼生物の乾物に対する安定元素濃縮係数(生物中濃度/湖水中(懸濁物を含む)濃度)

								元	素 (ppb	in dry)						
湖沼/生物	K	Ca	Cr	Mn	Fe	Co	Ni	Cu	Zn	Sr	Мо	Cđ	Cs	Ce	Hg	Pb
琵琶湖 (北) / ケイソウ クロモ フラモ オカナケ・モ はシ (実) ヒシ (東) ヒン (根) マジジ・ミ (身) カワニナ (肉) イケチョウか・イ (肉) カラスカ・イ (肉) オオケニシ (肉)		5. 31×10 ² 1. 47×10 ³ 8. 08×10 ² 1. 10×10 ³ 1. 49×10 ³ 5. 20×10 ² 2. 11×10 ³ 7. 52×10 ² 9. 02×10 ³ 1. 23×10 ³ 3. 38×10 ³ 8. 71×10 ³	1. 56×10 ³ 2. 90×10 ³ 6. 80×10 ³ 8. 03×10 ³ 1. 25×10 ⁴ 6. 13×10 ³ 8. 36×10 ³	1. 32×10 ³ 8. 72×10 ⁴ 5. 02×10 ⁶ 1. 11×10 ⁵ 3. 70×10 ⁶ 1. 85×10 ⁶ 4. 99×10 ⁶ 8. 99×10 ⁶ 2. 54×10 ⁶ 4. 84×10 ⁶ 1. 50×10 ⁵ 1. 90×10 ³	1. 07×10 ⁴ 6. 67×10 ³ 6. 93×10 ³ 1. 55×10 ³ 1. 15×10 ³ 2. 93×10 ³ 4. 40×10 ³ 4. 27×10 ³ 5. 97×10 ³ 9. 25×10 ³ 2. 64×10 ³	1. 44×10 ³ 2. 45×10 ³ 2. 45×10 ³ 1. 52×10 ³ 2. 31×10 ³ 1. 08×10 ³ 4. 04×10 ³ 1. 08×10 ³ 1. 37×10 ⁴ 1. 08×10 ³ 3. 61×10 ²	5. 08×10 ² 2. 03×10 ² 8. 36×10 ² 3. 62×10 ² 5. 54×10 ² 1. 88×10 ³ 1. 69×10 ² 5. 07×10 ³ 4. 52×10 ¹ 1. 02×10 ²	2. 35×10 ⁴ 4. 15×10 ³ 6. 22×10 ³ 4. 49×10 ³ 2. 42×10 ³ 1. 04×10 ³ 1. 73×10 ³ 1. 76×10 ⁴ 3. 45×10 ³ 1. 73×10 ³ 6. 94×10 ⁴	2. 97×10 ⁴ 1. 26×10 ⁴ 2. 05×10 ⁴ 1. 26×10 ⁴ 1. 26×10 ³ 4. 57×10 ³ 2. 05×10 ⁴ 1. 91×10 ⁴ 1. 34×10 ⁴ 2. 19×10 ⁴ 6. 26×10 ⁴							
琵琶湖 (北) / フナ (全体) フィ (全体) フュ (全体) ヒパニッ (全体) はかけず モ 立がけず モ 琵琶湖 (全体) フィ (全体) フィ (全体) フュ (全体) ブコ ヒパニッ (全体) はかけず モ コカナザ モ				1. 93×10 ² 8. 67×10 ² 1. 32×10 ⁴ 1. 20×10 ³ 3. 94×10 ⁵ 8. 67×10 ⁴ 6. 21×10 ² 3. 28×10 ³ 1. 98×10 ⁴ 1. 76×10 ⁵ 2. 61×10 ⁴			5. 13×10 ¹ 4. 62×10 ¹ 1. 39×10 ² 1. 36×10 ² 5. 04×10 ² 4. 10×10 ¹ 1. 54×10 ¹ 1. 34×10 ² 6. 87×10 ² 2. 32×10 ⁸ 5. 01×10 ²	3. 97×10 ³ 1. 59×10 ³ 1. 74×10 ³ 5. 39×10 ⁴ 9. 08×10 ³ 1. 09×10 ⁴ 1. 77×10 ³ 1. 57×10 ³ 3. 39×10 ³ 4. 94×10 ⁴ 1. 86×10 ⁴ 5. 04×10 ⁴	1. 05×10 ⁴ 2. 68×10 ⁴ 1. 37×10 ⁴ 5. 38×10 ⁴ 2. 72×10 ⁴ 1. 42×10 ⁴ 3. 23×10 ⁴ 3. 73×10 ⁴ 1. 07×10 ⁴ 3. 76×10 ⁴ 7. 13×10 ⁴ 1. 91×10 ⁴							8. 52×10 ² 9. 90×10 ² 1. 40×10 ³ 3. 13×10 ³ 1. 10×10 ² 6. 71×10 ³ 9. 82×10 ² 1. 22×10 ² 2. 30×10 ³

参考文献

- 1) 小林 純:農学研究, 48/2, 63-106(1960)
- 小林 純:森井ふじ,村本茂樹,中島 進,浦上桂子,西崎日佐夫,寺岡久之, 長尾憲人:農学研究,55/3,103-144(1976)
- 小林 純,藤井ふじ,村本茂樹,中島 進,浦上桂子,西崎日佐夫,寺岡久之, 長尾憲人:農学研究,57/1,17-54(1978)
- 4) 鎌田政明,大西富雄,坂本隼雄:日本化学会誌,1,35-41(1977)
- 5) 日下 譲, 辻 治雄, 森本明夫, 一山秀樹, 犬飼修三, 根元義章, 竹原明雄, 天王寺谷裕子:日本化学会誌, 10, 1363-1368(1978)
- 6) 谷崎良之,永塚澄子:日本化学会誌,No.11, 2094-2098(1974)
- 7) 畠山成久, 佐竹 潔, 福島 悟:国立公害研究所研究報告, No. 99, 15-32(1986)
- 8) 新潟県公共用水水域水質測定結果,昭和63年度新潟県環境保健公害対策課編
- 9) 北海道公共用水水域水質測定結果,昭和63年度北海道環境保健公害対策課編
- 10) 田口早智子, 菅野 猛, 佐竹武典, 関 俊彦: 仙台衛生試験所報告第13号437-445 (1983)
- 11) " " 同 第14号375-380(1984)
- 12) " " 同 第15号381-389(1984)
- 13) " " 同 第16号378-398(1986)
- 14) 横山義秀, 佐々木正:宮城農学短期大学学術報告, Vol. 25, 17-21(1977)
- 15) " Vol. 26, 13-17(1978)
- 16) " Vol. 28, 24-31(1980)
- 17) 横山義秀:宮城農学短期大学学術報告, Vol. 29, 19-24(1981)
- 18) " Vol. 30, 13-19(1982)
- 19) " Vol. 32, 47-53(1984)
- 20) " Vol. 33, 55-61(1985)
- 21) " Vol. 35, 63-69(1987)
- 22) 環境庁水質保全局監修:全国公共用水域水質年鑑 1989年度版,第16号, 378-398 (1986)
- 23) 建設省河川局編:水質年表 第28回 昭和62年, (1987)
- 24) 斎藤 健:岩手県衛生研究所年報,21,139-143(1978)
- 25) " 21, 137-138(1978)
- 26) " 20, (1977)

- 27) 永塚澄子, 谷崎良之, 山崎正夫: Radioisotopes, 31, No.2, 4-7(1982)
- 28) 永塚澄子, 谷崎良之: Radioisotopes, 30, No.5, 9-13(1981)
- 29) 滋賀県立衛生環境センター:「琵琶湖産魚類,貝類,水草類及び低質中の重金属調 香報告」昭和58年3月
- 30) 佐竹正忠, 高木靖弘, 米窪達雄, 永長幸雄:日本化学会誌, 3,532-535(1976)
- 31) 倉田 亮:環境化学研究報告 B2-R12-1 「びわ湖とその集水域の環境動態」昭和 53年
- 32) Mutsuo Koyama & Osamu Itasaka, "An Introduction to Limnology of Lake Biwa" Edited by Shuiti Mori, (1980), Aug. Kyoto.
- 33) 相崎 弘,福島武彦:「霞ヶ浦全域調査データ」国立公害研究所資料第29号, 1-18 (1988)
- 34) Radioactivity Survey Data in Japan: NIRS-RSD-52~83
- 35) 小山睦夫, 高松武次郎, 川嶋宗継:原子力工業, 26(6), 48-52(1980)
- 36) Nojiri, Y., Kawai, T., Otsuki, A. & Fuwa, K., Water Reseach, 19/4, 503-509 (1985)
- 37) 山本哲也, 唐沢貞次, 辻本敏雄, 田口勝久: 全国公害研究会誌, 3/1 1~10(1978)
- 38) Coughtrey, P.L. & Thorne, M.C., "Radionulide Distribution and Transport in Terrestrial and Aquatic Ecosystem A Critical Review" A.A. Balkema, Rotterdam (1983)
- 39) 海洋放射能調査最終報告書, NIRS "海洋調査研究成果の概要"昭和48年4月

(石川昌史)

6-2 既存の濃縮係数一覧

水棲生物の食品としての利用にともなう放射性物質の摂取経路は、放射性物質の環境放出に起因する公衆の被曝線量当量を評価する上で重要な被曝経路の一つとされており、評価に用いられる濃縮係数に関するデータは海産生物とともに淡水生物についても多数収集されてきた。Chapman らは、海水・陸水、および、水棲生物の安定元素の分析データを収集・解析し、ほぼすべての元素について濃縮係数を導いた。総括的に濃縮係数が与えられた例として特筆されるべきものである。これらの数値は、後に、Thompsonらによって見直しされ、同時に、実環境での放射性核種分析データに基づく濃縮係数の導入も試みられた。米国原子力規制委員会の軽水炉周辺に居住する公衆の線量当量評価指針では、水棲生物の濃縮係数としてこのThompsonらの値が採用されている。

一般に、実験室における実験系では摂餌や系内のセクター間で元素分布に関して平衡関係を達成・維持するなど自然環境条件を再現することが困難なためか、生物飼育実験によって得られた濃縮係数は現実の環境での測定値から導かれたものより小さい傾向が認められている。したがって、濃縮係数算出には主として実環境について報告された値が用いられてきている。

ここでは Chapmanら、Thompsonら、米国 NRCの濃縮係数を併記し、データの選択にどのような変遷があったかを示すとともに、同一環境中の水中および生物中の安定元素分析のデータから算出した Vanderploegらの値と近年発表されたいくつかの重要な報告にみられるデータを掲げることとする。これらのうち Feldtによって与えられたデータはドイツにおける安全評価に用いられているものである。また、Coughtrey等は安定元素とともに放射性元素分析値、トレーサー実験で得られた値についても報告しているので、ここに収録した。なお、濃縮係数は生物中の放射性核種(安定元素)濃度の水中の当該核種(元素)濃度に対する比の値で、表中の値は特に記載のない限り生物の生重量当たりの値から導かれたものである。また、表中の数値の表記法でEは10の累乗の積を表わすものとする。例えば1.00E+0 1,2.00E-02は、それぞれ、 $1.00\times10^{1},2.00\times10^{-2}$ を表わす。

(岡林弘之、木村健一、渡部輝久)

第 6-2-1 (a)表 Chapman らの(1968)の濃縮係数(原子番号 $1\sim50$) Concentration factors by Chapman et al. (atomic number $1\sim50$)

原子記号 Atomic Number	元 素 記 号 Element Symbol	淡水植物 Freshwater Plants	無脊推動物 Invertebrates	魚 類 Freshwater Fish
1	Н	9.26E-01	9.26E-01	9.26E-0
2	He	1.00E+00	1.00E+00	1.00E+0
3	Li	3.00E+00	5.00E-01	5.00E-0
4	Be	1.00E+02	1.00E+02	1.00E+0
5	В	2.00E+00	7.69E-01	7.69E-0
6	С	4.55E+03	3.64E+03	4.55E+0
7	N	2.50E+04	4. 25E+04	1.50E+0
8	0	9.22E-01	9. 22E-01	9.22E-0
9	F	2.00E+00	3.00E+00	3.00E+0
10	Ne	1.00E+00	1.00E+00	1.00E+0
11	Na	1.59E+02	2.70E+01	3.17E+0
12	Mg	1.00E+02	1.00E+02	1.00E+0
13	Al	8.33E+02	6. 25E+01	1.00E+0
14	Si	5.00E+01	2.50E+01	1.75E+0
15	P	1.00E+05	1.00E+05	1.00E+0
16	S	1.00E+02	1.00E+02	3.75E+0
17	CI	7.50E+02	1.88E+02	1.25E+0
18	Ar	1.00E+00	1.00E+00	1.00E+0
19	K	2.39E+03	1.09E+03	1.30E+0
20	Ca	1.33E+02	3.33E+02	4.00E+0
21	Sc	1.00E+04	1.00E+03	1.00E+0
22	Ti	2.00E+03	2.00E+03	1.00E+0
23	V	1.00E+02	5.00E+01	1.00E+0
24	Cr	4.00E+03	2.00E+03	2.00E+0
25	Mn	1.00E+04	4.00E+04	2.50E+0
26	Fe	5.00E+03	3.20E+03	3.00E+0
27	Co	1.00E+03	1.50E+03	5.00E+0
28	Ni	1.00E+02	1.00E+02	4.00E+0
29	Cu	1.00E+03	1.00E+03	2.00E+0
30	Zn	4.00E+03	4.00E+04	1.00E+0
31	Ga	1.67E+03	6.67E+02	3.33E+0
32	Ge	3.33E+02	1.67E+04	3.33E+0
33	As	3.33E+02	3.33E+02	3.33E+0
34	Se	8.00E+02	4.00E+02	4.00E+0
35	Br	7.50E+02	1.00E+02	1.25E+0
36	Kr	1.00E+00	1.00E+00	1.00E+0
37	Rb	1.00E+03	2.00E+03	2.00E+0
38	Sr	5.00E+02	7.00E+02	4.00E+0
39	Y	1.00E+04	1.00E+03	1.00E+0
40	Zr	1.00E+04	1.00E+03	1.00E+0
41	Nb	1.00E+03	1.00E+02	3.00E+0
42	Mo	1.00E+02	1.00E+02	1.00E+0
43	Tc	1.00E+02	2.50E+01	1.00E+0
44	Ru	2.00E+03	2.00E+03	1.00E+0
45	Rh	2.00E+03	2.00E+03	1.00E+0
46	Pd	2.00E+03	2.00E+03	1.00E+0
47	Ag	2.00E+02	3.08E+03	3.08E+0
48	Cd	1.00E+03	4.00E+03	3.00E+0
49	In	1.00E+05	1.00E+05	1.00E+0
50	Sn	3.33E+01	6.67E+02	1.00E+0

第6-2-1(b)表 Chapman らの(1968)の濃縮係数 (原子番号51~103) Concentration factors by Chapman et al. (atomic number51~103).

原子記号 Atomic Number	元 素 記 号 Element Symbol	淡水植物 Freshwater Plants	無 脊 推 動 物 Invertebrates	魚 類 Freshwater Fish
51	Sb		1.60E+04	4.00E+0
52	Te			
53	I	1.00E+02	2.50E+01	1.00E+0
54	Хe	1.00E+00	1.00E+00	1.00E+0
55	Cs	2.00E+02	1.00E+03	1.00E+0
56	Ba	5.00E+02	2.00E+02	1.00E+0
57	La	1.00E+04	1.00E+03	1.00E+0
58	Ce	1.00E+04	1.00E+03	1.00E+0
59	Pr	1.00E+04	1.00E+03	1.00E+0
60	Nd	1.00E+04	1.00E+03	1.00E+0
61	Pm	1.00E+04	1.00E+03	1.00E+0
62	Sm	1.00E+04	1.00E+03	1.00E+0
63	Eu	1.00E+04	1.00E+03	1.00E+0
64	Gd	1.00E+04	1.00E+03	1.00E+0
65	Tb	1.00E+04	1.00E+03	1.00E+0
66	Dy	1.00E+04	1.00E+03	1.00E+0
67	Но	1.00E+04	1.00E+03	1.00E+0
68	Er	1.00E+04	1.00E+03	1.00E+0
69	Tm	1.00E+04	1.00E+03	1.00E+0
70	Yb	1.00E+04	1.00E+03	1.00E+0
71	Lu	1.00E+04	1.00E+03	1.00E+0
72	Hf	1.00E+04	1.00E+03	1.00E+0
73	Ta	1.00E+03	1.00E+02	3.00E+0
74	¥	3.00E+01	3.00E+01	1.00E+0
75	Re	2.38E+02	5.95E+01	4.76E+0
76	0s	2.00E+03	2.00E+03	1.00E+0
77	Ir	2.00E+03	2.00E+03	1.00E+0
78	Pt	2.00E+03	2.00E+03	1.00E+0
79	Au	3.33E+01	5.00E+01	3.33E+0
80	Hg	1.00E+03	1.00E+05	1.00E+0
81	T1	1.00E+05	1.50E+05	1.00E+0
82	Pb	2.00E+02	2.00E+02	6.00E+0
83	Bi			1.50E+0
84	Po	8.00E+02	4.00E+02	4.00E+0
85	At	1.00E+02	2,50E+01	1.00E+0
86	Rn	1.00E+00	1.00E+00	1.00E+0
87	Fr	2.00E+02	1.00E+03	1.00E+0
88	Ra	1.00E+02	5. 00E+01	5.00E+0
89	Ac	1.00E+03	2.86E+02	1.00E+0
90	Th	1.50E+03	3.75E+02	1.50E+0
91	Pa "	1.00E+03	2.86E+02	1.00E+0
92	U	1.00E+03	3.00E+02	1.00E+0
93	Np D.:	1.00E+03	2.86E+02	1.00E+0
94	Pu	1.00E+03	2.86E+02 2.86E+02	1.00E+0
96	A m C m	1.00E+03 1.00E+03	The state of the s	1.00E+0
96		1.00E+03 1.00E+03	2,86E+02	1.00E+0
98	Bk Cf	1.00E+03	2.86E+02 2.86E+02	1.00E+0
99				1.00E+0
	Es	1.00E+03	2.86E+02	1.00E+0
100	Fm	1.00E+03	2.86E+02	1.00E+0
101	M d			
102	No Lr			

出典: CHAPMAN, W. H., FISHER, H. L., PRATT, M. W., Concentration Factors of Chemical Elements in Edible Aquatic Organisms. UCRL-50564,1968.

			ě
			*
			ř

第 6 -2-2 (a)表 Thompsonら(1972)の濃縮係数 (原子番号1~50) Concentration factors by Thompson et al. (atomic number 1~50).

Number 1 2 2 3 4 4 5 5 6 6 6 9 9 9 9 11 1 1 1 1 1 1 1 1 1 1 1		Freshwater	Measured	Invertebrates	Measured	無 発 Freshwater Eish	Measured
1 2 2 3 3 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Symbol	Plants	Č.		à	Fish	Ď.
2 8 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m	9, 01E-01		9. 01E-01		9. 01E-01	
2 4 4 7 8 8 11 11 11 11 11 11 11 11 11 11 11 11	He I.	1.00E+00		1, 00E+00 4 00E+01		5. 00E-01	
5 6 8 8 10 11	ge 21	2, 00E+01		1, 00E+01		2, 00E+00	
9 8 8 9 110 111	8	2, 20E+00		5. 00E+01		2, 20E-01	
8 9 10 11	o	4. 55E+03		9. 09E+03		4. 55E+03	
9 11 11	Z	1. 25E+04		1.50E+05		1, 50E+05	
110	0	9, 22E-01		9, 22E-01		9. 22E-01	
11	E. 2	2. 00E+00		1,00E+02		1. 00E+01	
1.1	No.	1. UOE+UO	5 00E+09	1 70E+01	2, 00E+02	2. 00E+01	1, 00E+02
12	Mg	1, 00E+02	20.000	1.00E+02		5, 00E+01	
13	A1	4. 17E+02		6. 25E+01		1.00E+01	
14	Si	1.25E+02		2, 50E+01		2, 50E+00	
15	Д (1. 00E+04	5. 00E+05	1,00E+05	2, 00E+04	1.00E+05	1. 00E+05
17	0 5	5 00E+02		1,00E+02		5. 00E+01	
- 8	Ar	1.00E+00		1, 00E+00		1, 00E+00	
19	Ж	6. 67E+02		8. 33E+02		1,00E+03	
20	Ca	1, 33E+02		3.33E+02		4. 00E+01	
21	Sc	1.00E+04		1,00E+03		1.00E+02	2.00E+00
22	Ti	5, 00E+02		3, 00E+03		1.00E+03	
23	> 5	1.00E+02	4 00E+03	3, 00E+03	9 00F+03	1. 00E+01	2 00E+02
P2		1 00E+04	1, 00E+04	4. 00E+04	9, 00E+04	1.00E+02	4.00E+02
26	Fe	1, 00E+03		3, 20E+03		1,00E+02	
27	3	2, 00E+02		2,00E+02		2, 00E+01	5, 00E+01
28	Ni	5, 00E+01		1,00E+02		1.00E+02	
59	Cu	1.00E+03	2, 00E+03	1. 00E+03	4.00E+02	2,00E+02	5.00E+01
30	Zu	1,00E+03	2.00E+04	1, 00E+04	1, 00E+04	1. 00E+03	2. 00E+03
31	g g	1, 67E+03		3.33E+01		3. 33E+03	
33	As	1. 67E+03	3, 00E+03	3, 33E+02	4. 00E+01	3.33E+02	1.00E+02
34	Se se	1, 00E+03		1. 67E+02		1. 67E+02	
35	Br	5. 00E+01		3, 33E+02		4. 17E+02	
36	Kr	1.00E+00		1.00E+00		1. 00E+00	
37	Rb	1. 00E+03		1. 00E+03		2, 00E+03	6
38	Sr	5. 00E+02	5. 00E+02	1, 00E+02		5. 00E+00	3. UUE+UI
38	Y	3, 00E+03		G 67F+00		3 33F+00	
40	N.	8 00E+03		1, 00E+02		3. 00E+04	
42	Wo	1, 00E+03		1.00E+01		1,00E+01	
43	Tc	4. 00E+01		5. 00E+00		1. 50E+01	
44	Ru	2.00E+02	2, 00E+03	3.00E+02		1. 00E+01	
45	Rh	2,00E+02		3.00E+02		1.00E+01	
46	Pd			3.00E+02		1.00E+01	
47	γg	2.00E+02		7. 69E+02		2, 31E+00	
48	PO ,	1. 00E+03		2. 00E+03		2. 00E+02	
49	II .	001300		1 005+03		3 006+03	

第 6-2-2 (b)表 Thompsonら(1972)の濃縮係数(原子番号51 \sim 103) Concentration factors by Thompson et al. (atomic number $51\sim103$).

1, 000+16 1, 500+00 2, 000+00 1, 000+02 2, 000+00 2, 000+02 1, 000+02 2, 000+00 1, 000+03 2, 500+01 1, 000+03 1, 000+03 2, 500+01 1, 000+03 1, 000+03 2, 500+01 1, 000+03 1, 000+03 2, 500+01 1, 000+03 1, 000+03 2, 500+01 2, 500+01 1, 000+03 2, 500+01 2, 500+01 1, 000+03 2, 500+01 2, 500+01 1, 000+03 2, 500+01 2, 500+01 1, 000+03 2, 500+01 2, 500+01 1, 000+03 2, 500+01 2, 500+01 1, 000+03 2, 500+01 2, 500+01 1, 000+03 2, 500+01 2, 500+01 1, 000+03 2, 500+01 1, 500+02 2, 500+01 1, 500+03 2, 500+01 2, 5, 500+01 1, 500+03 2, 500+01 2, 5, 500+01 1, 500+03 2, 500+01 2, 5, 500+01 1, 500+03 2, 500+01 2, 5, 500+01 1, 500+03 </th <th>Freshwater Plants 1.50E+03</th>	Freshwater Plants 1.50E+03
1.00E+02	
1.00E+02	
1, 00E+03	
1, 00E+03 2, 50E+01 1, 00E+03 2, 50E+01 1, 00E+03 2, 50E+01 1, 00E+03 2, 50E+01 1, 00E+03 3, 00E+03 3, 00E+03 3, 00E+04 1, 00E+03 3, 00E	
1.00E+03 2.50E+01 2.50E+01 2.50E+01 2.00E+01 2.50E+01 3.00E+02 3.38E+01 3.00E+03 3.38E+01 3.00E+04 3.38E+01 3.00E+02 3.30E+01 3.00E+03 3.30E+01 3.00E+04 3.30E+01 3.00E+02 3.30E+01 3.00E+03 3.30E+01 3.00	
1, 00E+03 2, 50E+01 1, 00E+04 2, 50E+01 1, 00E+04 3, 33E+00 2, 50E+01 1, 00E+02 3, 00E+04 3, 33E+01 1, 00E+02 1, 00E+02 1, 00E+03 2, 50E+01 1, 00E+04 3, 00E+04 1, 00E+05 1, 00E+01 1, 00E+07 1, 00E+01 1, 00E+07 2, 50E+01 1, 00E+08 3, 30E+01 1, 00E+09 2, 50E+01 1, 00E+00 3, 00E+02 1, 00E+00 2, 50E+01 1, 00E+03 3, 50E+01 1, 00E+03 1, 00E+01 1, 00E+04 1, 00E+01 1, 00E+05 1, 0	
1.00E+03 2.50E+01 2.00E+04 2.50E+01 3.00E+04 3.33E+00 3.00E+02 3.33E+01 3.00E+02 3.33E+01 1.00E+03 3.33E+01 1.00E+03 3.33E+01 1.00E+04 3.33E+01 1.00E+05 1.00E+04 1.00E+07 1.00E+04 1.00E+07 1.00E+07 1.00E+08 2.50E+01 1.00E+08 2.50E+01 1.00E+09 2.50E+01 1.00E+09 2.50E+01 1.00E+03 2.50E+01 1.00E+04 2.50E+01 1.00E+05 3.50E+01 1.00E+05 3.50E+01 1.00E+06 3.50E+01 1.00E+07 3.50E+01 1.00E+08 2.50E+01 1.00E+09 3.50E+01 1.00	
1.00E+03 2.50E+01 1.00E+04 2.50E+01 2.00E+01 1.00E+02 3.00E+02 1.00E+02 3.00E+02 1.00E+02 3.00E+02 1.00E+03 3.00E+02 1.00E+03 1.00E+03 3.33E+01 1.00E+04 3.33E+01 1.00E+05 1.00E+01 2.00E+01 3.33E+01 3.00E+02 1.00E+03 3.00E+02 1.00E+03 4.00E+02 2.50E+01 1.00E+03 3.00E+03 1.00E+03 3.00E+01 1.00E+04 3.00E+01 1.00E+05 3.00E+01 1.00E+05 3.00E+01 1.00E+05 3.00E+01 1.00E+05 3.00E+01 3.00E+05 3.00E+01 3.00	
1.00E+03 2.50E+01 1.00E+04 2.50E+01 1.00E+04 3.30E+04 1.00E+05 3.00E+04 1.00E+07 1.00E+01 2.00E+07 1.00E+01 3.00E+07 1.00E+02 3.00E+07 1.00E+03 3.00E+07 1.00E+07 1.00E+07 1.00E+07 2.00E+04 2.50E+01 3.00E+07 3.00E+07 4.00E+02 5.00E+01 5.00E+04 5.00E+01 1.00E+02 5.00E+01 1.00E+03 2.50E+01 1.00E+04 3.00E+02 3.00E+01 1.00E+03 2.50E+01 1.00E+03 3.00E+01 1.00E+04 3.00E+01 1.00E+05 3.00E+01 1.00E+05 3.00E+01 1.00E+06 3.00E+01 1.00E+07 3.00E+01 3.00E+07 3.00E+01 3.00E+07 3.00E+01 3.00E+07 3.00E+01 3.00E+08 3.00E+01 3.00E+09 3.00E+01 3.00E+01 3.00E+	
1. 00E+03 2. 50E+01 1. 00E+03 2. 50E+01 1. 00E+03 2. 50E+01 1. 00E+03 3. 5. 50E+01 2. 50E+01 3. 00E+03 3. 00E+04 3.	1
1. 00E+03 2. 50E+01 1. 00E+03 3. 33E+00 2. 50E+01 3. 33E+00 3. 00E+02 3. 00E+02 3. 00E+02 1. 00E+01 3. 00E+02 3. 30E+02 3. 00E+02 1. 00E+01 3. 00E+02 3. 30E+01 4. 00E+02 3. 30E+01 5. 00E+01 1. 00E+02 5. 00E+01 1. 00E+02 1. 00E+02 3. 33E+01 1. 00E+02 3. 33E+01 2. 00E+02 1. 00E+02 3. 00E+02 3. 33E+01 4. 00E+02 5. 00E+01 5. 00E+02 5. 00E+01 5. 00E+02 5. 00E+01 1. 00E+02 5. 00E+01 1. 00E+02 5. 00E+01 1. 00E+02 5. 00E+01 1. 00E+03 5. 50E+01 1. 00E+04 5. 50E+01 1. 00E+05 1. 00E+01 1. 00E+06 3. 50E+01 1. 00E+07 1. 00E+01 1. 00E+08 2. 50E+01 1. 00E+09 3. 50E+01 1. 00E+09 3. 50E+01 1. 00E+01 3. 50E+01 1. 00E+02 3. 50E+01 1. 00E+03 5. 50E+01 1. 00E+04 3. 50E+01 1. 00E+05 3. 50E+01 1. 00E+06 3. 50E+01 1. 00E+07 3. 50E+01 1. 00E+08 3. 50E+01 1. 00E+09 3. 5	
1.00E+03 2.50E+01 1.00E+03 2.50E+01 1.00E+03 2.50E+01 1.00E+03 3.38E+00 2.50E+01 3.00E+01 3.00E+01 1.00E+02 3.00E+01 3.00E+02 3.00E+01 1.00E+02 3.00E+02 1.00E+02 1.00E+02 3.00E+02 3.38E+01 1.00E+02 3.00E+02 3.30E+02 1.00E+01 3.00E+02 3.30E+01 2.50E+01 3.00E+02 3.00E+01 3.50E+01 3.00E+02 3.00E+01 3.50E+01 3.00E+03 2.50E+01 3.50E+01 3.00E+03 2.50E+01 3.50E+01 3.00E+03 2.50E+01 3.50E+01 3.00E+03 2.50E+01 3.00E+01 3.00E+03 3.50E+01 3.00E+01 3.00E+03 3.00E+01 3.00E+01 3.00E+03 3.00E+01 3.00E+01 3.00E+03 3.00E+01 3.00E+01 3.00E+03 3.00E+03 3.00E+03	
1.00E+03	
1. 00E+03	
6. 67E+00 6. 67E+02 7. 3.3E+00 7. 00E+01 7. 00E+01 7. 00E+02 7. 00E+02 7. 00E+02 7. 00E+02 7. 00E+02 7. 00E+02 7. 00E+03 7. 00E+03 7. 00E+03 7. 00E+03 7. 00E+04 7. 00E+03 7. 00E+04 7. 00	
b. 6 k b v c 3. 006 + 0.4 1. 006 + 0.2 1. 206 + 0.3 3. 006 + 0.2 1. 006 + 0.2 3. 006 + 0.2 1. 006 + 0.2 3. 006 + 0.2 1. 006 + 0.2 3. 006 + 0.2 1. 006 + 0.2 1. 006 + 0.2 1. 006 + 0.2 1. 006 + 0.2 1. 006 + 0.2 1. 006 + 0.2 1. 006 + 0.2 1. 006 + 0.2 1. 006 + 0.2 2. 006 + 0.1 1. 006 + 0.2 3. 006 + 0.1 1. 006 + 0.2 4. 006 + 0.2 2. 006 + 0.1 5. 006 + 0.2 2. 006 + 0.1 1. 006 + 0.2 3. 006 + 0.1 2. 006 + 0.1 3. 006 + 0.1 1. 006 + 0.2 3. 006 + 0.1 2. 006 + 0.1 1. 006 + 0.1 3. 006 + 0.1 1. 006 + 0.1 4. 006 + 0.2 3. 506 + 0.1 1. 006 + 0.3 2. 506 + 0.1 1. 006 + 0.3 3. 506 + 0.1 1. 006 + 0.3 3. 506 + 0.1 1. 006 + 0.3 3. 506 + 0.1 1. 006 + 0.3 3. 506 + 0.1 1. 006 + 0.3 3. 506 + 0.1 1. 006 + 0.3 1. 006 + 0.3	
5. 95E+01 1. 19E+02 3. 00E+02 1. 19E+02 3. 00E+02 1. 00E+01 3. 00E+02 1. 00E+01 5. 00E+01 3. 33E+01 1. 00E+05 1. 00E+03 1. 00E+05 1. 00E+03 1. 50E+04 1. 00E+04 1. 00E+05 1. 00E+04 1. 00E+06 3. 00E+01 2. 00E+04 1. 50E+01 1. 00E+02 3. 00E+01 2. 00E+04 5. 00E+01 1. 00E+02 4. 00E+02 2. 50E+01 5. 00E+01 1. 00E+02 5. 00E+01 2. 50E+01 1. 00E+02 3. 50E+01 2. 50E+01 4. 00E+02 3. 50E+01 1. 00E+03 2. 50E+01 1. 00E+03 1. 00E+01 1. 00E+03 1. 00E+01	
3. 00E+02 3. 00E+02 3. 00E+02 3. 00E+02 1. 00E+01 1. 00E+02 1. 00E+03 1. 00E+03 1. 00E+04 1. 00E+04 1. 00E+04 1. 00E+04 1. 00E+04 2. 00E+04 1. 00E+02 2. 00E+01 1. 00E+02 2. 50E+01 1. 00E+02 2. 50E+01 2. 50E+01 2. 50E+01 2. 50E+02 3. 00E+01 3. 00E+01 4. 00E+02 5. 00E+01 1. 00E+02 5. 00E+01 1. 00E+02 5. 00E+01 1. 00E+02 5. 00E+01 1. 00E+02 1. 00E+03 1. 00E	
3. 00E+02 3. 00E+02 5. 00E+01 1. 00E+02 1. 00E+03 1. 00E+03 1. 00E+03 1. 00E+04 1. 00E+04 1. 00E+04 2. 00E+04 2. 00E+00 1. 00E+02 2. 00E+00 1. 00E+02 2. 50E+01 2. 00E+02 3. 00E+01 1. 00E+02 3. 00E+01 1. 00E+02 2. 50E+02 3. 00E+01 1. 00E+02 3. 00E+01 1. 00E+02 4. 00E+02 1. 13E+01 2. 50E+01 1. 00E+02 3. 50E+01 1. 00E+03 1. 00E+03 1. 00E+03 1. 00E+03 1. 00E+03 1. 00E+03 1. 00E+01 1. 00E+03 1. 00E+01 1. 00E+03 1. 00E+01 1. 00E+03 1. 00E+03 1. 00E+01 1. 00E+03 1. 00E+01 1. 00E+03 1. 00E+01 1. 00E+03 1. 00E+03 1. 00E+03 1. 00E+03 1. 00E+03 1. 00E+01 1. 00E+03 1. 00E	
3. 00E+02 5. 00E+01 1. 00E+02 1. 00E+03 1. 00E+03 1. 00E+04 1. 00E+04 1. 00E+04 1. 00E+04 1. 00E+04 1. 00E+07 1. 00E+07 1. 00E+07 1. 00E+00 1. 00E+01 1. 00E+00 1. 00E+01 1. 00E+02 2. 50E+01 2. 50E+01 2. 50E+01 2. 50E+01 2. 50E+01 2. 50E+01 3. 00E+01 1. 00E+02 4. 00E+02 1. 00E+02 1. 00E+02 2. 50E+01 2. 50E+01 1. 00E+02 3. 50E+01 1. 00E+03 1. 00E+03 1. 00E+03 1. 00E+03 1. 00E+03 1. 00E+03 1. 00E+01 1. 00E+03 1. 00E+01 1. 00E+02 1. 00E+03 1. 00E+01 1. 00E+03 1. 00E+01 1. 00E+02 1. 00E+02 1. 00E+01 1. 00E+02 1. 00E+01 1. 00E+02 1. 00E+02 1. 00E+01 1. 00E+02 1. 00E+01 1. 00E+02 1. 00E+01 1. 00E+02 1. 00E+02 1. 00E+01 1. 00E+02 1. 00E	
1. 00E+05 1. 00E+04 1. 00E+02 1. 00E+02 1. 00E+01 1. 00E+02 2. 00E+04 1. 00E+01 1. 00E+02 1. 00E+01 1. 00E+02 2. 50E+01 1. 00E+02 3. 50E+01 1. 00E+02 1. 00E+02 1. 00E+02 1. 00E+02 2. 50E+01 1. 00E+02 3. 50E+01 1. 00E+03 1. 00E+03 3. 50E+01 3. 50E	
1. 50E+04 1. 00E+02 1. 00E+02 1. 00E+04 2. 00E+04 2. 00E+04 3. 00E+01 5. 00E+00 1. 00E+03 2. 50E+01 1. 00E+02 2. 50E+02 2. 50E+01 2. 00E+02 3. 00E+01 1. 00E+02 4. 00E+02 5. 00E+01 1. 00E+02 5. 00E+01 1. 00E+02 6. 00E+01 1. 00E+02 1. 00E+03 2. 50E+01 1. 00E+03 3. 50E+01 3. 00E+01 3. 00E+02 4. 00E+02 4. 00E+03 5. 00E+01 5. 00E+01 5. 00E+01 5. 00E+01 5. 00E+02 5. 00E+01 5. 00E+02 5. 00E+01 5. 00E+03 5. 00E+01 5. 00E+03 5. 00E+03 5. 00E+01 5. 00E+03 5. 00E+03 5. 00E+01 5. 00E+03 5. 00E	1
1. 00E+02 3. 00E+02 1. 2. 00E+04 5. 00E+01 5. 3. 00E+01 5. 3. 00E+01 5. 3. 00E+01 1. 00E+01 5. 3. 00E+02 1. 00E+02 5. 00E+01 7. 00E+02 7. 00E+01 7. 00E+03 7. 00E+01 7. 00E+03 7. 00E+01 7. 00E+03 7. 00E+01 7. 00E+02 7. 00E+01 7. 00E+01 7. 00E+02 7. 00E+01 7. 00E+02 7. 00E+01 7	
2. 00E+04 5. 00E+01 5. 00E+01 5. 00E+00 1. 50E+01 5. 00E+01 1. 00E+02 4. 00E+02 4. 00E+02 2. 50E+02 5. 00E+01 2. 50E+01 1. 00E+03 2. 50E+01 2. 50E+01 2. 00E+02 3. 00E+01 2. 50E+01 1. 13E+02 1. 00E+02 3. 50E+01 4. 00E+02 6. 00E+01 1. 00E+01 1. 00E+02 3. 50E+01 2. 50E+01 1. 00E+03 2. 50E+01 2. 50E+01 1. 00E+03 2. 50E+01 3. 50E+01 1. 00E+03 2. 50E+01 1. 00E+01 1. 00E+03 2. 50E+01 1. 00E+01 1. 00E+03 2. 50E+01 1. 00E+01 1. 00E+02 1. 00E+01 1. 00E+01	
5. 00E+00 1. 50E+01 1. 00E+00 4. 00E+02 2. 50E+02 5. 00E+01 1. 00E+02 5. 00E+01 1. 00E+02 2. 50E+01 2. 50E+01 3. 00E+01 1. 13E+02 3. 00E+01 2. 1. 00E+02 1. 13E+01 3. 00E+01 1. 00E+01 4. 00E+02 3. 50E+01 1. 00E+03 2. 50E+01 1. 00E+02 1. 00E+01	
1. 00E+00 1. 00E+02 2. 50E+02 2. 50E+02 1. 00E+03 2. 50E+01 2. 00E+01 2. 00E+02 3. 00E+01 3. 00E+01 4. 00E+02 5. 00E+01 1. 00E+02 6. 00E+01 1. 00E+02 1. 00E+03 2. 50E+01 1. 00E+03 3. 50E+01 1. 00E+03 3. 50E+01 1. 00E+03 3. 50E+01 1. 00E+03 4. 00E+03 5. 00E+01 5. 00E+01 5. 00E+01 7. 00E+03 7. 50E+01 7. 00E+03 7. 00E	
2. 50E+02 2. 50E+02 3. 50E+01 1. 00E+02 3. 00E+01 3. 00E+01 4. 00E+02 4. 00E+02 5. 00E+01 1. 00E+02 5. 00E+01 7. 00E+02 7. 00E+01 7. 00E+02 7. 50E+01 7. 00E+03 7. 50E+01 7. 50E	
1. 00E+03 2. 50E+01 5. 00E+02 3. 00E+01 1. 13E+02 1. 13E+01 4. 00E+02 6. 00E+01 1. 00E+01 1. 00E+02 1. 00E+01 2. 50E+01 1. 00E+03 2. 50E+01 1. 00E+02 1. 00E+01	1
5. 00E+02 3. 00E+01 1. 13E+02 6. 00E+01 1. 13E+01 4. 00E+02 6. 00E+01 1. 00E+01 1. 00E+02 3. 50E+00 1. 00E+03 2. 50E+01 1. 00E+03 1. 00E+01 1. 00E+02 1. 00E+01	
1. 13E+02 1. 13E+01 2. 1. 00E+02 6. 00E+01 1. 00E+01 3. 50E+02 3. 50E+00 1. 00E+03 2. 50E+01 1. 00E+03 1. 00E+01 1. 00E+02 1. 00E+01 1. 00E+02 1. 00E+01	1 1
4. 00E+02 0. 00E+01 1. 00E+02 1. 00E+01 1. 00E+03 2. 50E+01 1. 00E+03 1. 00E+01 1. 00E+02 1. 00E+01 1. 00E+02 1. 00E+01	
1. 00E+02 1. 00E+03 1. 00E+03 1. 00E+03 1. 00E+02 1. 00E+02	

出典:THOMPSON, S. E., BURTON, C. A., QUINN. D. J., NG, Y. C., Concentration Factros of Chemical Elements in Edible Aquatic Organisms. UCRL-50564, Rev. 1, 1972. (註1):放射性核種の実測値から導かれた値。

-87**~**88-

第6-2-3(a)表 US Reg. Guide 1.109(1972) の濃縮係数 (原子番号 $1\sim50$) Concentration factors by US Reg. Guide 1.109 (atomic number $1\sim50$).

原子記号 Atomic Number	元素記号 Element Symbol	無 脊 推 動 物 Invertebrates	魚 類 Freshwater Fish
1	Н	9.0E-01	9.0E-01
2	He		
3	Li		
4	Be		
5	В		
6	С	9.1E+03	4.6E+03
7	N		
8	0		
9	F		
10	Ne		
11	Na	2. 0E+02	1.0E+02
12	Mg		
13	A1		
14	Si		
15	P	2.0E+04	1.0E+05
16	S		
17	C1		
18	Ar		
19	K		
20	Ca		
21	Sc		
22	Ti		
23	V		
24	Cr	2.0E+03	2.0E+02
25	Mn	9.0E+04	4. 0E+02
26	Fe	3.2E+03	1.0E+02
27	Co	2.0E+02	5. 0E+01
28	Ni	1.0E+02	1.0E+02
29	Cu	4.0E+02	5. 0E+01
30	Zn	1.0E+04	2. 0E+03
31	Ga		
32	Ge		
33	As		
34	Se		
35	Br	3.3E+02	4. 2E+02
36	Kr		
37	Rb	1. 0E+03	2. 0E+03
38	Sr	1. 0E+02	3. 0E+0
39	Y	1. 0E+03	2.5E+0
40	Zr	6. 7E+00	3, 3E+00
41	Nb	1. 0E+02	3. 0E+04
42	Mo	1. 0E+01	1.0E+0
43	Tc	5. 0E+00	1.5E+0
44	Ru	3. 0E+02	1. 0E+0
45	Rh	3. 0E+02	1.0E+0
46	Pd		
47	Ag		
48	Cd		
49	I n Sn		

第6-2-3 (b)表 US Reg. Guide 1.109(1972) の濃縮係数 (原子番号 $51\sim103$) Concentration factors by US Reg. Guide 1.109 (atomic number $51\sim103$).

原子記号 Atomic Number	元素記号 Element Symbol	無 脊 推 動 物 Invertebrates	魚 類 Freshwater Fish
51	Sb		
52	Te	6.1E+03	4.0E+02
53	I	5.0E+00	1.5E+01
54	Хe		
55	Cs	1.0E+03	2. 0E+03
56	Ba	2. 0E+02	4.0E+00
57	La	1.0E+03	2.5E+01
58	Ce	1. 0E+03	1. 0E+00
59	Pr	1.0E+03	2. 5E+01
60	Nd	1.0E+03	2.5E+01
61	Pm		
62	Sm		
63	Eu		
64	Gd		
65	Tb		
66	Dy		
67	Но		
68	Er		
69	Tm		
70	Yb		
71	Lu		
72	Нf		
73	Ta		
74	¥	1.0 E+01	1.2E+03
75	Re		
76	0s		
77	Ir		
78	Pt		
79	Au		
80	Hg		
81	T1		
82	Pb		
83	Bi		
84	Po		
85	At		
86	Rn		
87	Fr		
88	Ra		
89	Ac		
90	Th		
91	Pa		
92	U		
93	Np	4. 0E+02	1.0E+01
94	Pu		
95	A m		
96	Cm		
97	Bk		
98	Cf		
99	Es		
100	Fm		
101	Md		
102 103	No Lr		

出典: U.S. NUCLEAR REGULATORY COMMISSION, Calculations of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose Evaluating Compliance with 10 CFR Part 50, Appendix 1. Regulatory guide 1, 109 Revision 1,1972.

第 6 - 2 - 4(a)表 Vanderploegら(1975)の濃縮係数(原子番号 1 \sim 50) Concentration factros by Vanderploeg et al. (atomic number I \sim 50).

原子記号 Atomic Number	元素記号 Element Symbol	淡水植物 Freshwater Plants	無 脊 推 動 物 Invertebrates	∭ ≭û Freshwater Fish
1	H	1. 0E+00	1.0E+00	1. 0E+00
2	lle			
3	Li			
4	Ве			
5	В			
6	С			
7	N			
8	0			
9	F			
10	Ne			
11	Na			
12	Mg .			
13	AI			
14	Si			
15	Р .			
16	S			
17	CI			
18	Ar	1/2		
19	K			
20	Ca			
21	Sc			
22	Ti			
23	V			
24	Cr			
25	.Mn	1. 0E+03 1. 0E+04	2, 0E+03 1. 0E+05	3.2E-01/ [Mn]w (註1)
26	Fe			
27	Со	4. 0E+02 1. 0E+04	4. 0E+02 1. 0E+04	2. 7E+01 3. 2E+02 (註2)
28	Ni			
29	Cu			
30	Zn			
31	Ga			
32	Ge			
33	As			
34	Se			
35	Br			
36	Kr			
37	Rb		0.00.00	15 10 1 011 50 7 1 2515
38	Sr	2, 0E+02	3. 0E+02	exp [5.18-1.211n[Ca]w] (註3)
39	Y			
40	Zr			
41	Nb			
42	Mo			
43	Tc			
44	Ru Rh			
45				
46	Pd			
47 48	Ag Cd			
48	In			

第6-2-4(b)表 Vanderploegら(1975)の濃縮係数(原子番号51~103) Concentration factros by Vanderploeg et al. (atomic number51~103).

Number	Element Symbol	淡水植物 Freshwater Plants	無 脊 推 動 物 Invertebrates	魚 類 Freshwater Fish
51	Sb			
52	Te			
53	I	1.2E+02 8.0E+02(註4)	5. 0E+01 3. 4E+02	4. 0E+01 5. 0E+01 (註5
54	Хe			
55	Cs	1. 0E+03	1. 0E+03	1.0E+03/ [K] w 1.5E+04/ [K] w(註6
56	Ba			
57	La			
58	Ce			
59	Pr			
60	Nd			
61	Pm			
62	Sm			
63	Eu			
64	Gd			
65	Tb			
66	Dy			
67	Но			
68	Er			
69	Tm			
70	Yb			
71	Lu			
72	Hf			
73	Ta			
74	¥			
75	Re			
76	0s			
77 _	Ir			
78	Pt			
79	Au			
80	Hg			
81	T1			
82	Pb			
83	Bi			
84	Po			
85	At			
86	Rn			
87	Fr			
88	Ra			
89	Ac			
90	Th			
91	Pa "			
92	U			
93	Np			
94	Pu			
95	Am C=			
96	Cm			
97	Bk			
98	Cf			
99	Es			
100	Fm			
101	Md			
102	No Lr			

出典: VANDERPLOEG, H. A., PARZYCK, D. C., WILCOX, W. H., KERCHER, J. R., KAYE, S. U., Bioaccumulation Factor for Radionuclides in Freshwater Biota. ORNL-5002, 1975.

(註1) [Mn] w:水中に共存する安定マンガンの濃度 (ppm)。

(註4) 植物プランクトンを含む。

(註2) 水域の冨栄用度に依存

(註5) 核種の半減期に依存。魚卵については8.0E+02。

(註3) [Ca] w:水中に共存する安定カルシウムの濃度(ppm)。

(註6) 魚類の濃縮係数は食性、棲息水域の懸濁物質濃度に依存。 [K] w:水中に共存する安定カリウムの濃度(ppm)。

第 6 - 2 - 5 (a)表 IAEA(1982)の濃縮係数(原子番号 1 \sim 50) Concentration factors by IAEA (atomic number 1 \sim 50).

原子記号 Atomic Number	元素記号 Element Symbol	魚 類 Freshwater Fish	無 脊 推 動 物 Invertebrates
1363502 E1015	5-25556, 43.1647	11811	
1	Н		
2	He		
3	Li		
4	Ве		
5	В		
6	С		
7	N		
8	0		
9	F		
10	Ne		
11	Na	2.0E+01	2.0E+01
12	Mg		
13	A 1		
14	Si		
15	P	1.0E+05	1.0E+05
16	S	8.0E+02	1.0E+02
17	Cl		11.54.655411.54
18	Ar		
19	K		
20	Ca		
21	Sc		
22	Ti		
23	V		
24	Cr	2.0E+02	2. 0E+03
25	Mn	4.0E+02	1.0E+05
26	Fe	1.0E+02	3. 0E+03
27	Co	3.0E+02	1.0E+04
28	Ni	1.0E+02	1.0E+02
29	Cu		
30	Zn	1.0E+03	1.0E+04
31	Ga		
32	Ge		
33	As		
34	Se		
35	Br		
36	Kr		
37	Rb	72 72 73	
38	Sr	6. 0E+01	3. 0E+02
39	Y	3. 0E+01	1.0E+03
40	Zr	3. 0E+02	1.0E+02
41	Nb	3.0E+02	1.0E+02
42	No		
43	Tc	2. 0E+01	5. 0E+00
44	Ru	1.0E+01	3. 0E+02
45	Rh		
46	Pd	4	
47	Ag	2.0E+00	7. 0E+02
48	Cd		
49	In		

第6-2-5(b)表 IAEA(1982)の濃縮係数 (原子番号51~103) Concentration factors by IAEA (atomic number51~103).

原子記号 Atomic Number	元 素 記 号 Element Symbol	魚 類 Freshwater Fish	無 脊 推 動 物 Invertebrates
51	Sb	1.0E+00	1.0E+0
52	Te	4.0E+02	6. 0E+03
53	I	4.0E+01	4. 0E+02
54	Хe		
55	Cs	2.0E+03	1.0E+00
56	Ba	4.0E+00	2. 0E+02
57	La	3.0E+01	1. 0E+03
58	Ce	3.0E+01	1. 0E+03
59	Pr		
60	Nd		
61	Pm	3. 0E+01	1.0E+03
62	Sm		
63	Eu		
64	Gd		
65	Tb		
66	Dy		
67	Но		
68	Er		
69	Tm		
70	Yb		
71	Lu		
72	Hf		
73	Ta		
74	¥		
75	Re		
76	0s		
77	Ir		
78	Pt		
79	Au		
80	Hg		
81	T1		
82	Pb	3.0E+02	1.0E+02
83	Bi	2.0E+01	1. 0E+05
84	Po	5. 0E+01	2. 0E+04
85	At	5,05.01	2.00.01
86	Rn		
87	Fr		
88	Ra	5.0E+01	3.0E+02
89	Ac		0.00.02
90	Th	3.0E+01	5. 0E+02
91	Pa	1.0E+01	1. 0E+02
92	U	1. 0E+01	1. 0E+02
93	Np	1. 0E+01	4. 0E+02
94	Pu	4. 0E+00	1. 0E+02
95	Am	3. 0E+01	1. 0E+03
96	Cm	3. 0E+01	1. 0E+03
97	Bk	0.00.01	1.01.00
98	Cf		
99	Es		
100	Fm		
101	Md		
102	No		
103	Lr		

出典: INTERNATIONAL ATOMIC ENERGY AGENCY: Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides From Routine Releases.

IAEA Safety Series No. 57, IAEA. Vienna, 1982. -94

第6-2-6(a)表 Millerら(1984)の濃縮係数 (原子番号1~50) Concentration factors by Miller et al. (atomic number1~50).

		×	人	42		100				
原子記号	元素記号		shw	110	-	Invertebrates			Freshwater Fish	
Atomic	Element	测定值 Default	而 Range) E	測定值 Default	德 Ran	Range	測定値 Default	育商	居 Range
		Value		o .	Value			Value		
1	н									
2	Не									
0 4	E E:									
ı.c	2 2									
9	U									
7	Z									
8	0									
6	E-1									
10	Ne Ne	00100			9 OF+01	9 OF+01	9 OE+09	2 OF+01	2. 0E+01	1. 0E+03
11	E SN	1.05+02			7,00101	7,00,00				
13	A1									
14	Si				TO AN					
15	Ь	1.0E+02			1. 0E+05	2.0E+04	1.0E+05	1. 0E+05	3. 0E+04	1. 0E+05
16	S	1.0E+02			1.0E+02			8. 0E+02	3. 0E+02	1.0E+03
17	CI									
18	Ar									
19	× (
21	Sc									
22	Ţ									
23	Λ									
24	Cr	4. 0E+01	4. 0E+01	4. 0E+03	2. 0E+01	2. 0E+01	2. 0E+03	4. 0E+01	4.0E+01	4. 0E+03
25	Wu	1. 0E+04	7.0E+01	1. 0E+04	4.0E+04	Z. 0E+03	1.08+05	1. UE+UZ 1. OE+02	2. UE+UI	3, 0E+02
97	re S	1. OE+03	0 00401	1 05+04	A 0F+09	9 OF+09	1. 0E+0.4	2. 0E+01	1. 0E+01	1. 0E+03
17	S :2	5. 0E+01	£. 05101	F0190 •1	1. 0E+02	1		1. 0E+02		
29	Cu	1. 0E+03	1. 0E+03	2. 0E+03	1. 0E+03			2. 0E+02	3. 0E+00	8, 0E+02
30	Zn	1. 0E+03	2.0E+02	2.0E+04	1. 0E+04	4.0E+03	2.0E+04	1. 0E+03	5.0E+02	8. 0E+03
31	Ga									
32	eg e									
33	As									
34	Se se									
36	Kr									
37	Rb .									
38	Sr	1, 0E+03	3. 0E+00	2. 0E+03	3. 0E+02			5. 0E+00	2. 0E+00	2.0E+02
39	γ	5. 0E+03			1. 0E+03			3. 0E+01	1. 0E+01	1. 0E+02
40	Zr	1. 0E+03	7. 0E+01	1. 0E+03	7. 0E+00			3. 0E+00	1. 0E+00	4. 0E+02
41	q _N	8. 0E+02	2. 0E+01	8. 0E+02	1.0E+02			1. 0E+02	4. 0E+01	4. 0E+02
42	OW E	10.50			T OBTOO			9 OF+01	9 OF+01	3. OE+01
43	Ic B:	4. UE+UI	1 0000	60 TUD 6	3 OF+09			1 OE+01	1. 0E+01	3. 0E+02
44	Rh	20. UE 1 U.C.	1.0000	70 00 0						
46	Pd									
47	ΛВ	2. 0E+02			8, 0E+02			2. 0E+00	2, 0E+00	1.0E+01
48	PO									
49	In									
C										

第6-2-6(b)表 Millerら(1984)の濃縮係数 (原子番号 $51\sim103$) Concentration factors by Miller et al. (atomic number $51\sim103$).

		Ŕ	水桶	421	N. H.	付 推 则	42	Ħ		
原子記号	元素記号		Freshwater Plants		_	Invertebrates	s		Freshwater Fish	
Atomic Number	Element	測定値 Default Velue		Range	測定値 Default Value	範 Ra	图ange	測定値 Default Value	術 Range	題 ige
15	Sp	2. 0E+03	3. 0E+01	2. 0E+03	1. 0E+01			1. 0E+00	1, 0E+00	2. 0E+02
52	Te	1, 0E+03			6, 0E+03	6, 0E+03	1. 0E+05	4. 0E+02		
53	_	8. 0E+02	4. 0E+01	8. 0E+02	3. 0E+02	5. 0E+00	3. 0E+02	2. 0E+01	1. 0E+01	8. 0E+02
54	Хе						0	00.00	10000	0.00
55	Cs	1. 0E+03	1.0E+01	2, 0E+03	1, 0E+03	60E+01	I. 0E+04	4. 0E+02	5. 0E+01	I. 0E+04
26	Ba	5. 0E+02			1. 0E+03			4. 0E+00	4. 0E+00	Z. 0E+0Z
22	La	5. 0E+03	1		Z. 0E+0Z			3. 0E+01	10,00	0 00
28	e)	5. 0E+03	3.0E+02	5, 0E+03	1. 0E+03			3. UE+01	1.06+01	Z. 0E+0Z
59	Pr									
09	Nd P	DO FAIO L			1 00.00			2 OF+01		
19	E 0	5. UE+U3			I. 05103			0.00101		
70	0 0									
63	ng o									
04 22	DD 4									
60	2 2									
00	H N									
10	1 1									
00	13 €									
20	III A									
1 1	2 :									
7.5	n 41									
1 2	: E									
74	M									
75	Re									
76	s ₀									
77	Ir									
78	Pt									
79	γn									
80	Hg									
81	T1									
82	Pb	2. 0E+02			1. 0E+03			3.0E+02	1.0E+02	3. 0E+02
83	Bi	1. 0E+05			1. 0E+05			2. 0E+01		
84	Po	2. 0E+03			2. 0E+04			5. 0E+01	5. 0E+01	5. 0E+02
82	Λt									
98	Rn									
87	Fr	00140	10140	00100	COTAC C			E OFTOI	2 OPTO1	1 OF+09
88	Ka	3. UE+U3	3. UE+UI	3. UE+U3	3. UETUZ			0.00101	0.0000	1.00.0
D 00	AC.	COTEO G	0 00101	5 OF 104	5 OF+09			3 OF+01	3 OE+01	1.0E+02
0.00	I I I	2. UE+US	3. OE+01	3. UETU4	1 OF+02			1 OE+01	*0.70	-
16	10 E	1.05+03	VOTAU V	1 00103	1.05+09			1 06+01	2 OF+00	2. OE+01
26	0 2	1. OE+US	4. 0E±00	1.00100	A 0F+02			1 OF+01	1 OE+01	1. 0E+02
200	N.D.	A OFTOS	GUTAU G	1 08+04	1 OF+09			4 OE+00	4. 0E+01	5. 0E+02
94	nv	4. UE102 5. OE103	20.00.0	1.00.01	1 OF+03			3. 0E+01	3. 0E+01	1. 0E+02
200	E 5	5. 0E+03			1. 0E+03			3. 0E+01	3, 0E+01	1. 0E+02
97	Bk									
86	Cf									
66	Es									
100	File									
101	Md									
102	No									

出典: Models and Parameters for Environmental Radiological Assessment, C.W., Miller (Ed.), DOE/TIC-11468,1984.

第6-2-7(a)表 Postonら(1988)の濃縮係数 (原子番号1~50) Concentration factors by Poston et al.(atomic number1~50).

原子記号	元素記号	魚	類
Atomic	Element	Fresh	
Number	Symbol	Fi	
1	Н	1.01	E+00
2	Нe		
3	Li	La contraction of the contractio	
4	Ве		
5	В		
6	C		
7	N		
8	0		
9	F		
10	Ne		
11	Na	1.0	E+02
12	Mg		
13	A 1		
14	Si		
15	P	3.0E+03	7.0E+04 (註1)
16	S		
17	C1		
18	Ar		
19	K		
20	Ca		
21	Sc	1.0	E+02
22	Ti		
23	V		
24	Cr		
25	Mn	3.2E-01/ [Mn] w	4.0E+02 (註2
26	Fe	2.5E+02	2.0E+03 (註3
27	Co	3.0E+01	3.3E+02 (註4
28	Ni	1.0	E+02
29	Cu		
30	Zn	2.5	E+03
31	Ga		
32	Ge		
33	As		
34	Se		
35	Br		
36	Kr		
37	Rb		
38	Sr	exp [5.18-1.21	ln [Ca] w) (註5
39	Y		
40	Zr		E+02
41	Nb		E+02
42	Mo		E+01
43	Tc		E+01
44	Ru	1.0	E+02
45	Rh		
46	Pd		
47	Ag		
48	Cd		
49	In		

- (註1) P.32にたいして3.0E+03. 安定リンにたいして7.0E+04。
- (註 2) 水中のマンガン濃度、[Mn] w(ppm) が与えられた場合3.2E-01/[Mn] w、 データのない場合4.0E+02。
- (註3) 肉食性魚類2.5E+02、雑食性・プランクトン食性魚類2.0E+03。
- (註4) 富栄養水域3.0E+01、その他の水域3.3E+02。
- (註 5) [Ca]w:水中に存在するカルシウム濃度(ppm)。
- (註 6) 魚食魚2.0E+02、雑食性魚類・プランクトン食性魚類5.0E+02。
- (註 7) 魚食魚1.5E+04/[K]w、非魚食魚5.0E+03/[K]w、[K]w: 水中のカリウム濃度(ppm)。
- (註8) 魚食魚5.0E+01、プランクトン食性魚類2.5E+01、底棲魚2.5E+02。

第6-2-7(b)表 Postonら(1988)の濃縮係数 (原子番号 $51\sim103$) Concentration factors by Poston et al.(atomic number $51\sim103$).

原子記号	元素記号	魚類	
Atomic	Element	Freshwater	
Number	Symbol	Fish	
51	Sb	2.0E+02	
52	Te		
53	I	2.0 E+02 5.0 E+02 (註 6)	
54	Хe		
55	Cs	5.0E+03/[K] w 1.5E+04/ [K] w (註 6	
56	Ba	2. 0E+02	
57	La	10.000	
58	Ce	5. 0E+02	
59	Pr		
60	Nd		
61	Pm		
62	Sm		
63	Eu		
64	Gd		
65	Tb		
66	Dy		
67 68	Ho Er		
69	Tm		
70	Yb		
71	Lu		
72	Hf		
73	Ta		
74	¥		
75	Re		
76	0s		
77	Ir		
78	Pt		
79	Au		
80	Hg		
81	T1		
82	Pb		
83	Bi		
84	Po		
85	At		
86	Rn		
87	Fr		
88	Ra	7. 0E+01	
89	Ac		
90	Th	1.0E+02	
91	Pa	5 00.01	
92	U	5. 0E+01	
93	Np	5.0E+00 2.5E+02 (註 8)	
94	Pu	5. 0E+00 2. 5E+02 (註 8)	
95	A m	5. 0E+00 2. 5E+02 (註 8)	
96	Cm	5.0E+00 2.5E+02 (註8)	
97	Bk		
98	Cf		
99	Es		
100	Fm		
101	M d No		
102	Lr		

出典: Concentration factors used in the assessment of radiation dose to consumers of fish; A review of 27 radionuclides, Poston, T.M. and Klopfer, D.C., Health Physics, 55,751~766, 1988.

第 6-2-8 (a)表 Feldt (1990)の濃縮係数(原子番号 $1\sim50$) Concentration factors by Feldt (atomic number $1\sim50$).

原子記号	元素記号		魚 類 Freshwater Fish
Atomic Number	Element Symbol	既定値 Default Value	濃縮係数決定式 Equation for Determining CF
ı	Н	1.0E+00	
2	He		
3	Li		
4	Be		
5	В		
- 6	С		
7	N		
8	0		
9	F		
10	Ne		
11	Na	1.0E+02	
12	Mg	l-unanananan	
13	A1		
14	Si		
15	P	2.0E+03	exp [12.2-In [P] w] (註)
16	S		
17	CI		
18	Ar		
19	К		
20	Ca		
21	Sc		
22	Ti		
23	V		
24	Cr	2.0E+02	
25	Mn	1.0E+02	exp [4.92-0.9]n [Mn] w! (註1
26	Fe	1.0E+02	exp 19.58-1.221n [Fe] w 1 (註1
27	Co	1.0E+02	exp {1.10-0.741n [Co] w } (註1
28	Ni	1.0E+02	
29	Cu	1.0E+01	
30	Zn	4.0E+02	exp (8.55-ln [2n] w) (註1
31	Ga		
32	Ge		
33	As		
34	Se	2.0E+02	
35	Br		
36	Kr		
37	Rb	2.0E+03	
38	Sr	3. 0E+01	
39	Y		4/
40	Zr	2. 0E+02	
41	Nb	2. 0E+02	
42	Mo		
43	Тс	8. 0E+01	
44	Ru	1.0E+02	
45	Rh		
46	Pd		
47	Ag	1.0E+01	exp {0.22-0.851n [Ag] w } (註1
48	Cd		
49	In		
50	Sn	3. 0E+03	

第6-2-8(b)表 Feldt (1990)の濃縮係数 (原子番号51~103) Concentration factors by Feldt (atomic number $51 \sim 103$).

原子記号	元素記号		魚 類 Freshwater
Atomic	Element		Fish
Number	Symbol	既定値	農縮係数決定式
"dmoci	0,0001	Default	Equation for Determining CF
		Value	
51	Sb	1.0E+02	
52	Te		
53	ı	5. 0E+01	
54	Хе		
55	Cs	1.5E+03	exp i14.2-1n [K] w) (註1)
56	Ba .	2. 0E+02	
57	La	1.0E+02	
58	Се	1.5E+02	
59	Pr		
60	Nd	0.50.01	
61	Pm	2.5E+01	
62	Sm		
63	E u G d		
65	Tb		
66	Dy		-
67	Ho	1	
68	Er		
69	Tm		
70	Yb		
71	Lu		
72	Hſ		
73	Ta		
74	W		
75	Re		
76	0 s		
77	l r		
78	Pt		
79	Au	3. 0E+01	
80	Hg	1.0E+03	
81	T I P b	1.0E+04	
82 83	B i		
84	Po		
85	At		
86	Rn		
87	Fr		
88	Ra	1.0E+01	
89	Ac		
90	Th	3.0E+01	
91	Pa		
92	U	2. 0E+00	
93	Np	1.0E+01	
94	Pu	8. 0E+00	
95	Am	2.5E+01	
96	Cm	2.5E+01	
97	Bk		
98 99	C f E s		
100	F m		
101	Md	-	
102	. No		
103	Lr		

出典: FELDT.W..Personal communication, 1990 。

(註 1) : [P] w. [Mn] w.etc. : 水中のリン、マンガン等の濃度 (ppm)。 —102—

第6-2-9(a)表 Coughtreyら (1983, 84,85)の濃縮係数 (原子番号 1~50)

Concentration factors by Coughtrey et al.

(atomic number 1-50)

E 7 27 E	- # = 1 G	淡水植 Fresh	ater		受類 tacea	軟体 Woll		魚 Fresh Fis	water
原子記号 Atomic Nuber	元素記号 Element Symbol	安定同位体(註 1) CF Based on the Data for Stable Isotopes		安定同位体(註 I) CF Based on the Data for Stable Isotopes	放射性元素(註2) CF Based on the Data for Radioisotopes	安定同位体(註 1) CF Based on the Data for Stable Isotopes	放射性元素 (註 2) CF Based on the Data for Radioisotopes		放射性元素(註 2) CF Based on the Data for Radioisotopes
1	Н								
2	He				*				
3	Li		8						
4	Ве								<u> </u>
5	В								
. 6	С		8	3					
7	N			V- 3					
8	0		15 15						
9	F								
10	Ne		V.						1.05
11	Na		1.0E+02 (註4)		1.0E+02 (註5)				1.0E+
12	Mg				i				
13	Al								
14	Si								
15	P							1 00100	1.0E+
16	S	1.0E+02		1. 0E+02				1. 0E+02 5. 0E+01	1.061
17	C1	5.0E+01	(註4)	5. 0E+01	(註5)			J, UE+U1	
18	Ār								
19	K								
20	Ca						:		
21	Sc								
22	Ti								
23	V	4 AP: 00	4.0E+03 (註3)	2.5E+03	2.5E+03	2.5E+03	2.5E+03	2. 0E+02	4.0E+
24	Cr	4. 0E+02		1. 0E+02		1. 0E+03			
25	Nn Fe	1.0E+03 5.0E+03		4. 0E+02		5. 0E+03			6. 0E
26	Co	3. 0E+03	1.0E+04 (註3)	2. 0E+03		3. 0E+03			*
28	Ni	3. 0E+03	3.0E+03 (註3)	5. 0E+02		0.02.00		1.0E+02	1.0E
29	Cu	3.02103	J. 0E (00 (EL 0)	0.05.02	0.00.00				
30	Zn	4.0E+04	5.0E+04 (± 3)	1.5E+04	1.0E+03	2. 0E+04	5. 0E+04	5. 0E+03	5. 0E
31	Ga	1,00,01	0.05.01 (25.0)						:
32	Ge								
33	As								
34	Se	6. 0E+04	1.0E+03 (註3)	1.0E+04	€ 1.0E+03	1.0E+04		8. 0E+03	
35	Br		1.0E+01 (註 4)		1.0E+01 (註5)				1.0E
36	Kr		1						
37	Rb	1.0E+03	(註3)	2. 0E+02	(註5)			5. 0E+02	
38	Sr	1. 0E+03		1.0E+02	:	1.0E+02		2. 0E+00	2.0E
39	Y				E				
40	Zr	1.0E+06	5.0E+03 (註3)	5.0E+03	: 5.0E+01 (註5)		1	5. 0E+03	
41	Nb		5.0E+02 (註3)	1.0E+04		1		3. 0E+04	
42	No	1.0E+02	(註3)	1.0E+02			:	1.0E+01	
43	Tc		5.0E+03 (註4)		3.0E+01		1.0E+02		3. 0E
44	Ru		1.02+03 (註4)		1.0E+02		5. 0E+02		1.0E
45	Rh				1		10		*
46	Pd		i		ŧ.				
47	Ag	1.0E+03		2.0E+02		6.7E+03			
48	Cd	1.0E+03		3. 0E+03		6.0E+03		2. 0E+02	1
49	In				\$		10		10
50	Sn	5.0E+04	: 5.0E+04 (註3)	5. 0E+04	: I.OE+04 (註5)		P	4.0E+05	1.0E

出典 : Radionuclide Distribution and Transfer in Terrestrial and Aquatic Ecosystems, COUGHTREY, P. J., JACKSON, D., JONES, C. H., KANE, P., THORNE, W. C., Vols. 1-3(1983), Vols. 4, 5(1984) and Vol. 6(1985), A. A. Balkema, Rotterdam/Boston.

- (註1) 安定同位体分析値から求めた濃縮係数値。
- (註2) 放射性元素分析、トレーサー実験から求めた濃縮係数値。
- (註3) 乾燥重量にもとづく濃縮係数値。
- (註4) 湿重量に基づく濃縮係数値。
- (註5) 無脊椎動物全体に対する濃縮係数値。

第 6 - 2 - 9 (b)表 Coughtreyら (1983, 84,85)の濃縮係数 (原子番号51~103) Concentration factors by Coughtrey et al.

í			Com.	num	har	5.1	-1	021	
	ai	OBI	C	D 33 FB	ner	3.1		11.37	

	ber 51-103 元素記号	淡水權 Fresh	water		受類 itacea	軟 (A Moll		無 Fresh Fi	water
Atomic Nuber		安定同位体(註1) CF Based on	放射性元素(註 2) CF Based on the Data for Radioisotopes	安定同位体(註 l) CF Based on the Data for Stable Isotopes	CF Based on the Data for	安定同位体(註 l) CF Based on the Data for Stable Isotopes	CF Based on the Data for Radioisotopes	安定同位体(註1) CF Based on the Data for Stable Isotopes	放射性元素(註2) CF Based on the Data for Radioisotopes
51	Sb	1.0E+03			2.0E+02	2. 0E+02			
52	Te	6.0E+04		1.0E±04		1.0E+04		8. 0E+03	
53	I	3.0E+02	3.0E+02 (註3)	2. 0E+02	1.0E+02 (註5)			3.0E+01	3.0E+01
54	Хe				- on on	1 AP. 00	0.00,00	4.05.00	0 05:00
55	Cs	2. 0E+03	8.0E+03 (註3)	1.06+02	5.0E+02	1.0E+02	2. 0E+02	4. 0E+02	8. 0E+02
56	Ва								
57	La	E 00±03	5.0E+03 (註 4)	5 0F±02	5.0E+02 (註5)			5. 0E+01	5, 0E+01
58 59	Ce Pr	5.06103	J. UETU3 (aI 4 /	J. 0E+02	. J. UE: UZ (al J)	3		3.00.01	0,02.01
60	Nd								
61	Pm		6.4E+03 (註3)				1.9E+03		
62	Sm		0.10.00 (22.0)		11	10			
63	Eu								() () ()
64	Gd						0) 0): 0):		
65	Tb		6) 8.5 6.7						
66	Dy								
67	Но		•		1				
68	Er		*						
69	Tm			-	ŧ				
70	Yb		4	-	# · · · · · · · · · · · · · · · · · · ·				
71	Lu		*				100		
72 73	Hf Ta								
74	T T		6 6		1				·
75	Re						1		# : * (
76	0s								*
77	Ir		4: 0		1		1		
78	Pt								
79	Au				# 5 # 1 # 1		*	# ! :	
80	Hg								
81	T1								
82	Pb				1	1			
83	Bi								
84	Po		1	-	1				1
85	A t Rn		1		*		(1) (1)		
86 87	Fr				:				
88	Ra		•				6) 6 6		
89	Ac						47 4 1		
90	Th						P		
91	Pa		1		1				
92	U				4-1 9-1				
93	Np				1				
94	Pu		8.9E+02 (註3)		1.0E+02 (註5)				3. 5E+00
95	Am		3.0E+03 (註3)		2. 0E+02		8.0E+02		2. 0E+00
96	Cm		4.0E+04 (註3)		4.6E+02 (註5)	-			2.5E+01
97	Bk				1		T.		
98	Cf			-					
99	Es Es		<u> </u>	-	1				
100 101	Fm Nd								1
101	No				7				
103	lr				4				

6-3 生物濃縮に関連する代謝パラメータ

放射性核種の水棲生物への移行に対する変動要因を評価する場合や生物による蓄積を動態的に評価する場合など水棲生物における放射性核種の代謝パラメータに関する情報を必要とすることが起こり得る。放射性核種の生態内動態は、生体内にいくつかの代謝プール(コンパートメント)を想定し、代謝プール間の移行を一次反応によって表す方法が最も一般的である。この代謝プールは生体内の各器官、組織に対応を求めることができるが、水棲生物の汚染評価においては生物が一つないし少数の代謝プールによって構成されると仮想し放射性核種の環境中の移行モデルにも組み込むことのできるような単純化がはかられている。代謝パラメータとして重要なものは、各プールへの移行割合、そして、取り込み速度および排泄速度であり、通常、これらは放射性同位元素などを用いた実験から導かれている。

表 6 - 3 にはこれまでに報告されている代謝パラメータから排泄速度(生物学的半減期**) に関して検索した結果を海産生物と淡水生物を対比して示す。報告された値は必ずしも一定ではなくまれに大きく相違するが、これは個々の実験で設定した実験条件に依っており、先に述べた生物濃縮に影響を及ぼす様々な変動要因が関係した結果であるということができる。個々の実験条件については原典を参照されたい。なお、淡水生物における放射性核種の代謝パラメータは、主としてフランス原子力庁カデラッシュ研究所で得られた知見に基づいたものである。

a) 放射性核種の体内残留率(投与量に対する残留量の割合)は片対数グラフ上でい くつかの直線を合成したものとして表すことができる。この直線の傾きから代謝プ ールの排泄速度定数(生物学的半減期)が得られる。排泄速度定数と生物学的半減 期の間には

排泄速度定数= 0.693 / 生物学的半減期

の関係がある。生物学的半減期は直線の数に対応して定義されるが、ここでは最も 傾きの大きい2つの直線について、すなわち、排泄が速やかである2つのプールの 生物学的半減期を表す。

· ·
3*
•
61
76

第6-3-1表 淡水生物における元素代謝パラメータ Metabolic parameters

	生物種- Organism	千一夕数	biological half 最大	half life 最大值	:-1(days) 算術平均值	幾何平均值	1 0 %	biological half	life 価	2(days) 简称平均值	幾何平均值
	anism	データ数	最小値		算術平均值	緣何平均值	ドーク教	唐/小庙	最大値	一篇然平均值	% 向 中 加 值
			1000				X	Ell. (Xhr		The state of the s	- interest
ದ		number of data	min.	шах.	arithmeti- cal mean	geometri- cal mean	of data		шах.	cal mean	cal mean
ಡ	⊕ @#### ⊕ @@####			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			1	6.7	7.4	6.9	7.0
ಡ	(a) (b)	4	0.1	0.4	0.2	0.1	4	1.0	59.0	22.3	9.8
ದ	₽						1		***************************************	17.0	
	編	000	2.0	10.0	5.0	4.1	9	2.5	25.0	14.1	11.6
(草	-	c	27 5	0 08	38 3	38.9	<u>د</u>	46.5	248. 2	136.5	97.8
	€€	7	0.10	03.0	00.00	7.00	0			4.8	
Cr 角本書	10										
₩:	(G)	4					4	2.0	65.0	45.5	25.5
		2	0.1	2.0	l.1	0.5					
M n 無付 無	無有権劉物(2) 無 類 (3)	T			1.5		3	47.0	312.0	160.3	121.4
煙	 €		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
Fe無裕格			# 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1		100000000000000000000000000000000000000						
E 5	9 E	-			0						
はない。	1										
)	(a) (b)	13	0.3	4.2	2.0	1.6	12	35.0	99.0	67.9	64.0
	Θ (
Z n 無脊相	無脊椎動物(2)	2	1.0	2.0	1.5	1.4	3	4.5	450.0	264.8	88.3
()	₹	1									
Sr無	100	2	8.0	8.0	8.0	8,0	2	72.0	72.0	72.0	72. 0
€ ‡	- 1	-			1.0						
製造	高 参 (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本)										
-											
埂	⊕										
ND 無容性	200										
æ t	数 4										
	4 Et 4 C										
M O M	無有性別物(4)	1			0.3		_			7.7	
型型	●	10000000000000000000000000000000000000									
Tc無格											
養	(a)	2	2,6	5.0	3.8	3.6	-			38.8	
-							1 1 2 2 2 3 3 4 5 5 7 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	***************************************			4
K u 無中	無有性別物(3)	6	0.2	9.9	3,5	1.9					
								1			
1 無裕	生動物②										
€ :		e (0.4	3.0			- 0	c		33.	
		.9.	9.0	0.1	9				100.0	71.7	53.1
o	(本) (本) (本) (本) (本) (本) (本) (本) (本) (本)	53	0.1	25.0	6.2	4.	105	3.		137.	
	⊕	1.5									***************************************
C e 無奇	無脊椎動物②	8	9 -	7 0	3.5	2.7					
種	₹										
P u 無枠	100										
€ 5	⊕€EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE<						8	13.4	30.2	22. 6	21.4
Am 無幹			***************************************	# # # # # # # # # # # # # # # # # # #							
	© (-			8.7					***************************************	

第6-3-2表 海産生物における元素代謝パラメータ Metabolic parameters

	Metabolic parameters	arameters		生物学的半減期	0半减期-1	(日)			生物学的半減期	5半減期-2	(8)	
Properties Table		1		biologic	al half life	e-1(days)		- 10	biologic	al half life	-2(days)	And the Person Library
Mathematical Control of Control	Elements	Organism	データ数	最小值	最大值	算術 arithmeti-	幾何平均值 geometri-	1	最小値	最大信 max	解伤斗四值 arithmeti-	数句字的 geometri-
Machine Mach					шах.	cal mean	geometri- cal mean	of data		may.	cal mean	cal mean
Mathematical Continuo Math	н	植物 ①無脊椎動物②								0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Machine Mach		類										
Mathematical Control		無谷権助物②			STORY OF THE WAY AND A STORY						6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
Machington		(A)							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-		
Registration	×	益 参 ① 無幹無野移②										
Market Market D	1	(a) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d										
		面 参 面 1 回 0 回 0 回 0 回 0 回 0 回 0 回 0 回 0 回 0 回							***************************************	***************************************	***************************************	
		無脊椎動物(2)										
		香香										
	N	無脊椎動物②		-		2.		9		63.0	19.8	12.4
		重										
		無脊椎動物②	3 1					2	33.1	57.8	45.5	43.7
		無 類 :	I THE WATER CONTROL OF THE PARTY OF THE PART	Nancasan Reported By				-			28.6	
		高 を (1) を (1) を (2) を (3) を (4) を	<i>L</i>	0 1		-	-	93	0 2	240 0	91.7	60.3
(本 報 句)		無方征影響(多)	2			0.	0.	5	23.9	166.0	62.2	47.5
解析性的の 2 0.3 3.2 2.2 1.1 0.7 5 5.2 5.3 521 0.0 0.7		型 参 回				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						
# 第 1		無脊椎動物②				2.	2.0	21 08	23.9	231.0	160.1	47.6
(を	1				5					
		無脊椎動物②	-								23.1	
		型 智									110.0	
(株) 類(3) (2) (2) (4) (4) (4) (5) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7		無谷権動物②										
 (株) 種類 (2) (株) 種間 (2) (株) 世間 (2)<th></th><th>(A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B</th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th>		(A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B						-				
編 類 ③	g Z	植物(I) 無脊椎動物(I)										
横移 ① (魚類。			10 10 10 10 10 10 10 10 10 10 10 10 10 1			-		0 00 00 00		
		福 物 ① 無脊椎動物②										
# (類 聲										
権 知 ③ 権 如 ① 無 報 ③		無容権動物②	383 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
横 初		無難										
概 類 ③ 5 0.2 1.0 0.6 0.4 5 30.0 688.0 171.4 77.2 概 類 ③ 4 1 </th <th></th> <th>相 物 () 無脊椎動物②</th> <th>8</th> <th>1.0</th> <th></th> <th>3.</th> <th>3.</th> <th>∞ (</th> <th>57.8</th> <th>267.0</th> <th></th> <th>119.6</th>		相 物 () 無脊椎動物②	8	1.0		3.	3.	∞ (57.8	267.0		119.6
無		数包	2	0.2		0.	0.	n n	30.0	685. 0		
(株) 類(3) 1 1 1.0 3.0 1.7 1.6 12 3.9 140.0 29.6 15.	н	無脊椎動物②										
無脊椎動物② 12 1.0 3.0 1.7 1.6 12 3.9 140.0 29.6 15. 植物① 植物① 1.0 11.0 5.0 3.5 5 17.0 122.0 57.6 45. 植物① 無脊椎動物② 魚類③ 株類③ 株育椎動物② 株類③ 40 40 無脊椎動物② 株育椎動物② 株育椎動物② 40 40 40 40 40 無脊椎動物② 株育権動物② 40 40 40 40 40 40 無脊椎動物② 40 40 40 40 40 40 40 無脊椎動物② 40 40 40 40 40 40 40 無脊椎動物② 40 40 40 40 40 40		整套				1.0		1			200.0	
植物 ① 3.0 3.0 3.0 31.0 43.0 植物 ① 植物 ① 43.0		無脊椎動物②	12	1.0				12			29.6	15.9
		₩.	2	1.0		'n.	χ,	n			37.6	45.8
		高 数 無 単 数 で で で また										
		無脊椎動物②										
	Am	無脊椎動物②										
		魚類③						A STANSFORM OF THE STAN				

0 invertebrate (N) plants Θ

参考文献

- FOULQIER, L.: Donnees Synthetiques sur les Publications de Radiohydrobiologie de la Section de Radioecologie, CEA-BIB-229, 1978.
- FOULQIER, L.: Etude Bibliographique sur la Capacite et les Modalites de la Fixation du Radiocesium par les Poissons, CEA-BIB-231W (2), 1979.
- FRITSCH, A.F. and BAUDIN, J.P.: Etude Experimentale de l'Absorption et de la Desorption par la Carpe (Cyprinus carpio L.) d'un Melange de ⁶⁰Co, ⁵¹Cr, ¹³⁷Cs, ⁵⁴Mn et ²²Na, CEA-R-5251, 1984.
- FRITSCH, A.F.: Etude Experimentale de l'Accumulation et de l'Elimination du Cobalt 60 par Cyprinus carpio(L.), CEA-R-5326, 1985.
- HONDA, Y., KIMURA, Y., TAMURA, Y. and TANAKA, C.: Uptake of 106Ru by Eggs and Fry of Rainbow Trout, J. Radiat. Res., 13, 95-99, 1972.
- HONDA, Y. KOGA, T. and MURAOKA, T.: Behaviour of ⁶°Co in a Non-flowering Small-scale Rice Field Ecosystem, J. Radiat. Res., 14, 209-218, 1973.
- KIMURA, Y. and HONDA, Y.: Uptake and Elimination of Some Radionuclides by Eggs and Fry of Rainbow Trout (I), J. Radiat. Res., 18, 170-181, 1977.
- KIMURA, Y. and HONDA, Y.: Uptake and Elimination of Some Radionuclides by Eggs and Fry of Rainbow Trout (II), J. Radiat. Res., 19, 182-193, 1977.
- KIMURA, Y. and HONDA, Y. and NISHIWAKI, Y.: Bioaccumulation and Retention of Some Radionulides by Developing Eggs and Larvae of Rainbow Trout, 近畿大学原子力研究所年報, 15, 21-37, 1978.
- KIMURA, Y., OGAWA, Y., FUKUI, M., TSUJIMOTO, T., HONDA, Y. and KATSURAYAMA, K.:

 Studies on the Physico-chemical Behaviour of ⁶⁰Co, ¹⁰⁶Ru and ¹⁴⁴Ce in Fresh
 Water, Hoken Buturi, 24, 237-247, 1989.
- Liste des Publications, Service d'Etudes et de Recherches sur l'Environnement, Centre d'Etudes Nucleaires de Cadarache, CEA/IPSN, Editions 1960-1988.
- NAKAHARA, M., KOYANAGI, T. and SAIKI, M.: Temperature Effect on the Concentration of Rdionuclides by Marine Organisms, J. Radiat. Res., 18, 122-131, 1977.
- NAKAHARA, M., HIRANO, S., ISHII, T. and KOYANAGI, T.: Accumulation and Excretion of Co-60 Taken up from Seawater by Marine Fishes, Bull. Japan. Soc. Sci. Fish., 49, 651-654, 1983.
- NAKAHARA, M., KOYANAGI, T., UEDA, T. and SHIMIZU, C. : Uptake and Excretion of

- Codalt-60 Taken up from Seawater by Octopus vulgaris, Bull. Japan. Soc. Sci. Fish. 48, 1739-1744, 1982.
- NAKAMURA, R., NAKAHARA, M., SUZUKI, Y. and UEDA, T.: Effects of Chemical Forms and Intake Pathways on the Accumulation of Radiactive Cobalt by the Abalone Haliotis discus, Bull. Japan. Soc Sci. Fish., 48, 1639-1944, 1982.
- NAKAMURA, R., NAKAHARA, M., SUZUKI, Y. and UEDA, T.: Relative Importance of Food and Water in the Accumulation of Radionuclides by Sea Urchin Strongylocentrotus nudus, Bull. Japan. Soc. Sci. Fish., 52, 703-710, 1986.
- NISHIWAKI, Y., KIMURA, Y., and HONDA, Y.: Experimental Methods for Radiological Studies with Developing Fish Eggs, IAEA-AG-134/8, in: "Methodology for Aquatic Ecosystems". Technical Report Series No.190, 195-209, IAEA, Vienna,
- PALLY, M. and FOULQUIER, L.: Etude Bibliographique sur la Capacite et les Modalites de la Fixation du Radiostrontium par les Poissons, CEA-BIB-232(2), 1979.
- SUZUKI, Y., NAKAHARA, M. and UEDA, T.: Accumulation of %5Zr and %5Nb by Common Goby (Acanthgobius flavimanus), Bull. Japan. Soc. Sci. Fish., 45, 1293-1298, 1979.
- SUZUKI, Y., NAKAHARA, M., NAKAMURA, R. and UEDA, T.: Uptake and Excretion of Cobalt by Sea CucumberStichopus japonicus and Prawn Penaeus japonicus, Bull. Japan. Soc. Sci. Fish., 48, 1495-1500, 1982.
- TATEDA, Y. NAKAHARA, M. and KOYANAGI, T.: Accumulation of Iron-59 in Marine Animals from different Uptake Route, Bull. Japan. Soc. Sci. Fish., 50, 89-93, 1984.
- UEDA, T., SUZUKI, Y., NAKAMURA, R. and NAKAHARA, M.: Accumulation of Co by Several Species of Marine Bivalves, Bull. Japan. Soc. Sci. Fish., 48, 993-997, 1982.
- UEDA, T., SUZUKI, Y., NAKAMURA, R. and NAKAHARA, M.: Accumulation of Co by bivalve Tridacna crocea, Bull. Japan. Soc. Sci. Fish., 48, 1293-1297, 1982.
- UEDA, T. and NAKAHARA, M.: Accumlation of Co by Marine Fish, Bull. Japan. Soc. Sci. Fish., 49,651-654, 1983.
- UEDA, T., NAKAHARA, M., SUZUKI, Y. and SHIMIZU, C.: Accumulation of ⁶⁵Zu by Octopus vulgalis, J. Radiat. Res., 26, 313-320, 1985.
- 岩田仲弘,中原元和,石井紀明,小柳 卓:マボヤによる放射性核種の取り込みと排出,電力中央研究所報告,U87038, (脚電力中央研究所,昭和63年1月.

- 木村雄一郎,小川喜弘,本多嘉秀,桂山幸典:魚卵,孵化稚魚および幼魚の発育成長過程における放射性物質の濃縮ならびに排出に関する研究,近畿大学原子力研究所年報,18,15-35,1981,12.
- 昭和62年度海洋環境放射能総合評価事業成果報告書-海産生物放射能影響評価調查-, 青森県,昭和63年1月.
- 本田嘉秀, 古賀妙子, 森嶋弥重, 佐藤安生, 北脇重富, 西脇 安:淡水生物による放射性ルテニウムの摂取ならびに排出, RADIOISOTPES, 20P 24-30, 1971.

本田嘉秀,木村雄一郎:水圏における²⁴¹Amの生物移行に関連する諸因子,「長寿命放射性核種の放射生物学的挙動とその被曝線量評価に関する研究」,文部省科学研究費・総合研究(A),滝澤行雄(研究代表者),14-17,1982年,3月.

(木村健一,渡部輝久)

環境パラメータ整備検討第二委員会名簿(敬称略)

委員

清 水 誠(主査) 東京大学 農学部 教授

石 川 昌 史 放射線医学総合研究所 那珂湊支所 海洋放射生態学研究部

主任研究官

岡 林 弘 之 (株)日環協 教育·研修部長

木 村 健 一 放射線医学総合研究所 環境衛生研究部 主任研究官

渡 部 輝 久 放射線医学総合研究所 那珂湊支所 環境放射生態学研究部

第一研究室長 (現在:) 脚環境科学技術研究所第一研究部

主任研究員)

協力者

青 山 勲 岡山大学 資源生物科学研究所 助教授

大 槻 晃 東京水産大学 水産学部 教授

オブザーバー

科学技術庁原子力安全局 大越 實, 吉森道郎

日本原燃サービス株式会社 滝本察春, 大柿一史, 岡本康治

日本原燃産業株式会社 米本弘司,松村勝秀,松本龍一,佐々木規行

事務局 (脚原子力環境整備センター 佐伯誠道, 濱田茂宏, 嶋野 昭

あとがき

本書の内容は、側原子力環境整備センターに設けられた環境パラメータ整備検討第二委員会の委員とその他の協力科学者により作成されました。なお、執筆には各委員が次のような分担であたりました。

執筆分担 (敬称略) CONTRIBUTOR

全般的な整理と編集(緒言,定義等の解説を含む)

佐伯 誠道 (M. SAIKI),清水 誠 (M. SHIMIZU),渡部 輝久 (T. WATABE) 濃縮係数に関する湖沼化学的考察

石川 昌史 (M. ISHIKAWA)

濃縮係数の変動要因

木村 健一(K.KIMURA),渡部 輝久

濃縮係数に関する計算モデル

清水 誠

人体の線量当量評価

飯嶋 敏哲 (T.IIJIMA)

日本における湖沼化学的データからの濃縮係数の試算

石川 昌史, 大槻 晃 (A. OTSUKI)

既存の濃縮係数一覧

岡林 弘之(H.OKABAYASHI),木村 健一,渡部 輝久

生物濃縮に関連する代謝パラーメータ

木村 健一,渡部 輝久

環境パラメータ・シリーズ 3 淡水から生物への 放射性物質の移行

平成4年7月1日 刊 行

財団法人 原子力環境整備センター

〒105 東京都港区虎ノ門2-8-10 (第15森ビル) TEL (03) 3504 - 1081 (代表) FAX (03) 3504 - 1297

June 1992
RADIOACTIVE WASTE MANAGEMENT CENTER
No.15 Mori Bldg.
Toranomon 2-8-10 Minato-Ku
Tokyo 105 JAPAN
TEL. (03) 3504-1081
FAX. (03) 3504-1297